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Executive Summary 

Mn/Model is a project that combines landscape and archaeological databases in a Geographic 
Information System (GIS) with statistical prediction methods to provide an estimate of the risk 
that a given location contains archaeological artifacts.  Planners use these estimates both to seek 
out areas of low risk and to accommodate areas of high risk when planning transportation 
projects.  Obviously, more accurate risk estimates lead to improved planning and reduced costs. 

Mn/Model is about to move into its fourth phase, which will include improved landscape and 
archaeological data.  At this time, Mn/DOT wishes to reconsider the statistical prediction 
methods used in Phase 3 to determine if better alternatives are available. 

This project proposed and compared eight prediction methods, the Phase 3 method and seven 
alternatives.  The methods were logistic regression with BIC model selection (the Phase 3 
approach), logistic regression with Bayesian model averaging, naïve Bayes classification, tree-
structured regression, “bumped” trees, “bagged” trees, “double bagged” trees, and “boosted” 
trees.  Bumping, bagging, and boosting are examples of “perturb and aggregate methods,” which 
repeatedly modify the data in minor ways and then combine the predictions from the modified 
data sets.  Overall, bagging, double bagging, and boosting had the best predictive ability.   

We recommend that bagged trees, or bagging, be the default prediction method for Phase 4.  
Bagging is easier to do in S-Plus (the statistical software used) than boosting and easier to 
implement in the GIS framework.  Bagging provides substantial improvement in predictive 
capability over the Phase 3 method.  Tree-structured models are also fairly easy to explain to the 
general public.  Double bagging provides a small improvement over bagging, but at the cost of 
substantially more effort in implementation. 



 

 

 

 

 

 

 

 

 

 
 

 

1. Introduction 

Mn/Model is a predictive model for precontact archaeological site location in Minnesota (Hudak 
et al. 2002).  Its goal is to use landscape variables such as proximity to water, elevation, aspect, 
and soil type to classify the landscape into those locations where archaeological sites are more 
likely and those where they are less likely.  The motivation for Mn/Model was, and is, that the 
Minnesota Department of Transportation (Mn/DOT) is required by Section 106 of the National 
Historic Preservation Act of 1966, as amended, to make a good faith effort to identify historic 
properties within any project area and assess the impact of the project on those cultural 
resources.  This assessment must be done before the project can proceed.  Accurate prediction of 
the location of cultural artifacts, or at least of landscapes where those artifacts are more likely to 
be found, thus speeds the process and provides potential cost savings. 

The Mn/Model project began in 1995 and moved through Phase 3 in 1999.  It was funded by 
Mn/DOT using federal money available through the Intermodal Surface Transportation 
Efficiency Act.  The scope of Mn/Model is geographically state-wide in Minnesota and 
temporally pre-1837 for cultural resources.  Mn/Model provides a set of digital maps providing 
an assessments of both how likely a location is to have historic properties and how likely similar 
locations are to have been surveyed.  These two bits of information help guide planners as to 
where surveys for cultural artifacts should be concentrated. 

Functionally, Mn/Model has landscape and cultural resource data stored as GIS layers, and 
predictive models are constructed for sub-regions of the state (for example, the Big Woods or the 
Anoka Sand Plain).  The landscape variables in GIS are primarily those that are not generally 
influenced by humans (for example, soil type, elevation, distance to water).  In some cases, there 
are variables that have changed since European settlement (for example, forest cover type), but 
data are available for the pre-European settlement era.  Because archaeological sites are rare in 
Minnesota, we compare landscape variables at known sites with landscape variables at random 
locations, the assumption being that nearly all random locations do not contain archaeological 
artifacts. 

The Mn/Model project builds the regional maps in a sequence of steps: 
1. Construct a separate data set for each region.  This data set includes the geographic 

location, site type, and all potential predictor variables.  The locations that go into this 
data set are all locations with known cultural resources, all locations that are known to 
have been surveyed for cultural resources, and a set of randomly chosen locations from 
within the region. 

2. Export this data set from ArcGIS (ESRI, Inc.) and import it into S-Plus statistical 
software (Insightful Corp.).   

3. Fit a predictive model using these data within S-Plus.   
4. Implement in ArcGIS the predictive model determined in S-Plus, producing digital maps 

for the entire region. 

Mn/Model is now entering Phase 4.  This phase will bring in additional predictive variables, 
clean up or provide more accurate versions of current predictive variables, use a spatially 
corrected database of archaeological sites, and make use of these new data collected since Phase 
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3 to produce new predictive models. Rather than simply use the prediction schemes previously 
used in Phase 3, Phase 4 will evaluate other prediction methods for building the predictive maps. 

The “Statistics for Mn/Model” project being reported here is the branch of the Phase 4 effort that 
seeks to evaluate alternate statistical methods for archaeological predictive models.  Our 
principal objectives are: 

Objective 1. Find the best prediction method for Mn/Model Phase 4 that can be implemented 
reasonably within GIS. 

Objective 2.  Produce S-Plus software (and accompanying documentation) to implement this 
prediction method in the context of Mn/Model Phase 4. 

Secondary objectives for this project include: 

Objective 3.  Provide Mn/Model professionals with guidance on ways to compare and evaluate 
prediction methods. 

Objective 4.  Train Mn/DOT professionals on the new prediction method. 

This report address objectives 1 and 3.  A separate document, the “User's Guide for Mn/Model 
Phase 4 S-Plus Software," addresses objective 2.  Training will be done in person. 

Chapter 2 of this report discusses methods and guidance for comparing prediction methods in the 
Mn/Model context.  These methods include the use of cross-validation for true and false positive 
rates, as well as graphical methods such as predictive distributions, ROC curves, and “gain” 
curves. 

Chapter 3 discusses potential prediction methods. This project proposed and compared eight 
prediction methods: logistic regression with BIC model selection (the Phase 3 method), logistic 
regression with Bayesian model averaging, naive Bayes classification, tree-structured regression, 
“bumped” trees, “bagged” trees, “double bagged” trees, and “boosted” trees.  Bumping, bagging, 
and boosting are examples of “perturb and aggregate methods,” which repeatedly modify the 
data in minor ways and then combine the predictions from the modified data sets.   

Chapter 4 compares the prediction methods on sample Mn/Model data and concludes that 
bagged trees (bagging) should be the prediction method for Phase 4.  Overall, bagging and 
boosting had the best predictive ability, and bagging is easier to implement in GIS as well as 
being easier to explain to the public. 

Chapter 5 runs through an example with the S-Plus software and explains the output.  

Chapter 6 gives conclusions. 
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2. Model Evaluation  

This chapter presents methods of evaluating possible classifiers for use in Mn/Model. It is 
broken into two sections:  

1. Comparing Classifiers, and  
2. Cross-Validation.  

The sections correspond to two basic questions: what are the properties or characteristics that tell 
us which classifiers are better, and what is an honest estimate of those properties? Most of the 
language and ideas of this chapter were originally developed in the context of medical diagnostic 
tests (Pepe 2003), but they are applicable to any two-category classification problem. 

2.1 Comparing Classifiers  

This section presents methods of comparing possible two-category classification tools. For 
example, we would like to predict whether or not a portion of landscape contains an 
archaeological site. Let’s say that we have two competing methods of prediction (rules). Every 
location is either a site or a non-site, and each rule classifies every location as either a site or a 
non-site. Thus we can form a 2 by 2 table listing the fractions of locations that fall into the four 
possibilities for how the rule classified them and their actual site/non-site status, as in Table 2.1. 

Rule 1 Rule 2 
Truth Site Non-Site Total Truth 
Site 0.08 0.02 0.10  Site 
Non-Site 0.30 0.60 0.90  Non-Site 
Total 0.38 0.62 1.00  Total 

Site Non-Site Total 
0.06 0.04 0.10 
0.20 0.70 0.90 
0.26 0.74 1.00 

Table 2.1.  Two competing classification rules.  Rows denote true classes, 
columns denote classes as determined by the rules. 

The true positive rate (TPR), or sensitivity, of the method is the fraction of sites that are correctly 
predicted to be sites. In probability terms, the sensitivity is the probability that the rule classifies 
a location as a site, given that the location actually is a site.  

Sensitivity1 = Pr(Rule 1 = Site | Truth = Site) = 0.08 / 0.10 = 0.80 

Sensitivity2 = Pr(Rule 2 = Site | Truth = Site) = 0.06 / 0.10 = 0.60 

In our example, Rule 1 correctly labels 80% of the true sites while Rule 2 correctly labels only 
60% of the true sites. That is, Rule 1 is more sensitive to the presence of an archaeological site. 

The specificity of the method is the fraction of non-sites that are correctly classified. In 
probability terms, specificity is the probability that the rule classifies a location as a non-site, 
given that the location actually is a non-site.  

Specificity1 = Pr(Rule 1 = Non-Site | Truth = Non-Site) = 0.60 / 0.90 ≈ 0.67 
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Specificity2 = Pr(Rule 2 = Non-Site | Truth = Non-Site) = 0.70 / 0.90 ≈ 0.78 

In our example, Rule 1 correctly labels about 67% of non-sites while Rule 2 correctly labels 
about 78%. That is, Rule 2 is more specific about what locations it labels as sites. A related 
measurement is the false positive rate (FPR): the fraction of non-sites that are incorrectly 
categorized as sites. In fact,  

false positive rate = 1 − specificity. 

A rule that is more specific about what it labels as a site will have fewer false positives.  

Ideally, both the sensitivity and the specificity of a method are high. If Rule 1 were both more 
sensitive and more specific than Rule 2, we would clearly prefer Rule 1. However, when one of 
the predictors is more sensitive and the other is more specific, we have to decide which errors are 
more costly before we can choose between the rules. For example, if the costs associated with 
happening upon an archaeological site at a location that was predicted as a non-site are much 
greater than the costs of unnecessarily surveying a location or unnecessarily avoiding portions of 
the landscape (avoiding predicted sites that were actually non-sites), then we will prefer the more 
sensitive method. 

Some predictive methods have a “tuning parameter” that adjusts their sensitivity and specificity. 
For example, in the case of logistic regression, portions of landscape are ordered according to 
their estimated likelihood of containing a site. Choosing a point in this continuum as a threshold 
creates prediction categories: locations above the threshold are labeled sites, the rest are labeled 
non-sites. Changing the threshold changes the sensitivity and specificity, and examining the 
sensitivity and specificity provides guidance in choosing the threshold. 

Unless we are able to perfectly predict whether a location is a site, there is a necessary trade 
between sensitivity and specificity when choosing a threshold. The extremes are illustrative. An 
extremely low threshold (negative infinity, say) would have sensitivity 1, because every site is 
correctly labeled a site, but this is because every location in the state would be labeled a site. 
Thus, the sensitivity is 1, but the specificity is 0. A rule based on this threshold would be entirely 
too sensitive; everything sets it off. Conversely, an extremely high threshold (positive infinity) 
would have specificity 1 because it correctly labels every non-site a non-site, but it also labels 
every site a non-site (sensitivity 0). Such a rule is far too specific about what it is willing to label 
a site.  

The trade-off between sensitivity and specificity in assigning a threshold is illustrated by the 
Receiver Operating Characteristic (ROC) curve. An ROC curve plots the true positive rate 
(sensitivity) against the false positive rate (1-specificity) as the threshold value varies. Figure 2.1 
is a typical ROC curve. The curve passes through the points (0,0) and (1,1). These points 
correspond to the extreme cases where no location is labeled a site and where every location is 
labeled a site. The diagonal line connecting these points corresponds to randomly guessing 
whether a portion of landscape contains an archaeological site; you get the point (p,p) on the line 
by randomly assigning a fraction p of the locations to be sites. An ROC curve above the diagonal 
implies that the rule (prediction model) does better than randomly guessing. 
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Figure 2.1: An ROC curve plots the true positive rate (TPR) against the false 
positive rate (FPR) as the threshold level varies.  

We may compare two models (Model 1 and Model 2) by comparing their ROC curves. If the 
ROC curve of Model 1 is uniformly greater than or equal to the ROC curve of Model 2, then 
Model 1 is more sensitive than Model 2 at every specificity. (It is also more specific at every 
sensitivity level.) In that case, Model 1 would clearly be preferable to Model 2. 

It may happen that ROC curves intersect, as is shown in Figure 2.2. In that case, one rule is 
preferable when high specificity is needed, and the other rule is preferable when high sensitivity 
is needed. For example, suppose that the costs associated with happening upon an archaeological 
site in a location predicted to be a non-site are much greater than the costs of unnecessarily 
avoiding portions of the landscape. Then we may fix the sensitivity at a high enough level to 
control against the costs of falsely labeling sites as non-sites. Once the sensitivity has been fixed, 
we choose the rule with the best specificity. In the example shown in Figure 2.2, if we require 
our rule to capture at least 80% of the true sites, then Model 1 is preferably, because it has a 
higher specificity (lower false positive rate) whenever sensitivity is at least 80%. If we only 
require 50% of the true sites to be labeled as sites, then the preferable model is Model 2. In this 
case, our choice of model depends on the percent of true sites that we are willing to mislabel. 
Thus, in addition to deciding what error is more important to guard against, we generally need to 
determine the rate at which we are willing to incur that error.  

5 



 

 

 

 
       

 

 

 

 
 

 

Figure 2.2: An example where the ROC curves for Model 1 (black) and Model 2 
(gray) intersect.  

Fixing sensitivity, increased specificity corresponds to a smaller fraction of landscape labeled as 
sites. For example, the two rules in Table 2.2 have the same sensitivity, but Rule 2 is more 
specific about what locations it labels sites. To capture 70% of the actual sites, Rule 1 has to 
label 37% of the landscape as sites. To capture the same percentage of actual sites, Rule 2 labels 
only 27% of the landscape as sites. 

Rule 1 Rule 2 
Truth Site Non-Site Total Truth 
Site 0.07 0.03 0.10  Site 
Non-Site 0.30 0.60 0.90  Non-Site 
Total 0.37 0.63 1.00  Total 

Site Non-Site Total 
0.07 0.03 0.10 
0.20 0.70 0.90 
0.27 0.73 1.00 

Table 2.2: An example where sensitivity is the same for both rules.  The higher 
specificity of Rule 2 (0.78 versus 0.67) results in a smaller fraction of the 
landscape labeled a site (27% versus 37%). 

Sensitivity and specificity tell us about a classification rule’s performance for sites and non-sites 
respectively. When the rule is actually put into practice, the truth is unknown, and all we have is 
the prediction made by our classification rule. Thus, we would like to know how likely we are to 
encounter a site when the classification rule says that a site will be present, and also when the 
rule says that a site will not be present. 

The positive predictive value (PPV) is the fraction of locations that our rule classifies as sites that 
actually contain sites. In probability terms, PPV is the probability that a location is a site, given 
that the rule classifies the location as a site:  
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Positive Predictive Value = Pr(Truth = Site | Label = Site). 

The negative predictive value (NPV) is the fraction of locations that our rule classifies as non-
sites that actually are non-sites. In probability terms, NPV is the probability that a location is a 
non-site, given that the rule classifies the location as a non-site:  

Negative Predictive Value = Pr(Truth = Non-Site | Label = Non-Site). 

We define a new term, the Unexpected Discovery Rate (UDR), to be the probability of a location 
being a site, given that the prediction rule classified the location as a non-site:  

UDR = Pr(Truth = Site | Label = Non-Site) = 1 − NPV. 

The UDR is the “Oops rate,” the fraction of times that we find an archaeological site where we 
don’t expect it.  

The PPV, NPV, and UDR depend not only on the sensitivity and specificity but also on the 
prevalence, which is the fraction of the landscape that contains sites. In probability terms, the 
prevalence is the probability that a location is a site:  

Prevalence = Pr(Truth = Site). 

One way to think of the prevalence is as the chances of finding a site by choosing a random 
location. Prevalence is also called the a priori probability of a site. 

We would like to compare the PPV and NPV to the prevalence to see how much better we do 
using our prediction rule instead of simply guessing. We define the positive predictive gain 
(PPG) as the ratio  

PPG = Positive Predictive Value / Prevalence
                  = Pr(Truth=Site | Label=Site) / Pr(Truth=Site) . 

The positive predictive gain tells us how many times better the model is at discovering sites than 
a random survey would be. For example, in Table 2.2, the probability that a random location 
contains an archaeological site is 0.10. Under Rule 1, the probability that a location labeled a site 
is in fact a site is about 0.19, 

PPV1 = Pr(Truth = Site | Rule 1 = Site) = 0.07 / 0.37 ≈ 0.19 . 

Thus we find  

PPG1 = 0.19 / 0.10 = 1.9, 

meaning that locations labeled sites using Rule 1 are about 1.9 times as likely to be sites as a 
randomly chosen location. Under Rule 2, the PPV is about 0.26,  
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PPV2 = Pr(Truth = Site|Rule 2 = Site) = 0.07 / 0.27 ≈ 0.26 

making the PPG about 2.6,  

PPG2 = 0.26 / 0.10 = 2.6 . 

A location labeled a site with Rule 2 is 2.6 times as likely as a random location to be an 
archaeological site. 

We also want to compare a rule’s ability to avoid sites to the background probability of a site. 
We define the Negative Predictive Gain (NPG) as the ratio  

NPG = UDR / Prevalence = Pr(Truth=Site | Label=Non-Site) / Pr(Truth=Site) . 

The negative predictive gain tells us how much less likely we are to discover a site at a location 
labeled a non-site using the model than if we were surveying randomly. Returning again to Table 
2.2, Rule 1 has an unexpected discovery rate of about 0.05,  

UDR1 = Pr(Truth = Site | Rule 1 = Non-Site) = 0.03 / 0.63 ≈ 0.05, 

which is one half the chances of finding a site at random:  

NPG1 = Unexpected Discovery Rate / Prevalence ≈ 0.05 / 0.10 = 0.50. 

Since Rule 2 has an unexpected discovery rate of about  

UDR2 = Pr(Truth = Site | Rule 2 = Non-Site) = 0.03 / 0.73 ≈ 0.04, 

its negative predictive gain is about  

NPG2 = Unexpected Discovery Rate / Prevalence ≈ 0.04 / 0.10 = 0.40. 

That is, the chances of unintentionally discovering an archaeological site using Rule 2 are about 
40% of what they would be surveying at random.  

A good predictive rule will have a large PPG and a small NPG.  

Given a prevalence, we can compute the positive predictive gain and the negative predictive gain 
for every point on an ROC curve. Each different point (rule) on the ROC curve can be identified 
by its true positive rate (vertical coordinate) or by its false positive rate (horizontal coordinate). 
We can thus examine positive (or negative) predictive gain by plotting it against either the TPR 
or the FPR; in fact, it is sometimes useful to do both.  
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Figure 2.3: Comparison of the negative predictive gain with the false positive rate 
(solid line) and true positive rate (dashed line). 

Figure 2.4: Comparison of the positive predictive gain with the false positive rate 
(solid line) and true positive rate (dashed line). 

Figure 2.3 plots the negative predictive gain against both the true and false positive rates; we 
have assumed the ROC curve of Figure 2.1 and 10% prevalence. The dashed red line plots the 
NPG against the true positive rate (top axis). For example, a classification rule that correctly 
labels 70% of the archaeological sites reduces our chances of unexpected discovery to about 40% 
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of what it would be with random survey (a reduction of 60%). The solid red line plots the NPG 
against the false positive rate (bottom axis). Continuing the example, the same rule that reduces 
our chances of accidental discovery by around 60% has a false positive rate of about 20% (it 
mislabels about 20% of the non-site landscape as a site). 

Figure 2.4 compares the positive predictive gain to the true and false positive rates; we again 
assume the ROC curve of Figure 2.1 and 10% prevalence. The dashed blue line plots the positive 
predictive gain against the true positive rate (top axis). The classification rule that correctly 
labels 70% of the archaeological sites is also about 2.7 times as efficient identifying sites as a 
random guess would be. The solid blue line plots the positive predictive gain against the false 
positive rate (bottom axis). Continuing the example, the same rule that gives a 2.7 times gain in 
efficiency also mislabels about 20% of the non-site landscape as a site.  

Line Comparison 

Dashed blue PPG vs. TPR 
Solid blue PPG vs. FPR 
Dashed red NPG vs. TPR 
Solid red NPG vs. FPR 

Figure 2.5.  Sample gain plot, showing both positive (blue) and negative (red) 
predictive gains against the true positive rate (dashed) and the false positive rate 
(solid).  

Gain curves like Figure 2.5 combine the plots in Figures 2.3 and 2.4 into a single graphic. This 
plot uses a single horizontal axis, but interprets it as FPR for solid lines and TPR for dashed 
lines. The vertical axis is the gain (either positive or negative).  

2.2 Cross-Validation  

The goal of our analysis is not to classify the observed locations—we know whether they are 
sites. Instead, we want to predict where archaeological sites remain uncovered. We create a 
classification rule based on the sample we have observed and use the information in that sample 
to predict whether a new location is a site. 
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Our prediction rules are developed with our data and for our data. This means that they likely 
work better with this data set than any other. In particular, the sensitivity and specificity we get 
by simply applying our rules to our data give us an overly optimistic picture of how well the 
rules will work when applied on new data. Cross-validation directly estimates the prediction 
error of the classifier on new data; this is called the out-of-sample prediction error of a classifier.  
Chapters 2 and 8 of Mosteller and Tukey (1977) provide a gentle introduction to the motivation 
and use of cross-validation. 

2.2.1 Standard Cross-Validation  

Every real prediction is about a location that was not used in development of the prediction rule. 
Nonetheless, we need to estimate how well our rules will work on these future locations based on 
what we know from our current data. Cross-validation simulates this “new location” prediction 
by setting some of the sample aside to see how well we are able to predict using the remainder of 
the sample.  

Run 1 
Predict 
Fit 
Fit 
…  
Fit  

… Run 2 
 Fit 
 Predict 
 Fit 

…  
Fit  

Subset 1 
Run 3 

 Fit 
 Fit 
 Predict 

… 
Fit 

… 
Run 10 
Fit 
Fit 
Fit 
… 
Predict 

Subset 2 … 
Subset 3 … 
… … 
Subset 10 … 

CV Predicted 
From run 1 
From run 2 
From run 3 
… 
From run 10 

Figure 2.6: Schematic of subset use and origin of predicted values in a ten-fold 
cross-validation. 

Figure 2.6 illustrates the case of a ten-fold cross-validation. A model is specified up to a set of 
parameters to be estimated. The data are randomly divided into ten subsets, and we will 
eventually produce predictions for data in all of the sub sets. To predict for subset 1, we fit the 
model using subsets 2 through 10 (Run 1). Then we use this model, which was fit without subset 
1, to predict subset 1.  These predicted values are then carried over to be the cross-validation 
predicted values for subset 1.  To predict subset 2, we fit the model using subsets 1 and 3 through 
10 (Run 2), and so on. We leave out each subset once until an out-of-sample prediction has been 
made for every observation. 

Phase 3 of Mn/Model essentially used two-fold cross-validation to evaluate models.  For Phase 
4, we propose to evaluate the true and false positive rates of our prediction rules using ten-fold 
cross-validation. We will divide the data into 10 groups at random and do 10 runs, leaving out 
and predicting one of the groups in each run. The out-of-sample predictions and the truth can be 
used to estimate the prediction error of the classifier. We call these cross-validated estimates.  

Any of the measures outlined in Section 2.1 can be applied to the out-of-sample predictions. 
Sensitivity, specificity, ROC curves, and gain plots can all be calculated and in general should be 
calculated. On their own, they provide estimates of the classifier’s abilities as a prediction tool. 
When compared with the analogous measures based on the full sample, they indicate the 
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sensitivity of the estimation procedure to the data observed.  

2.2.2 Spatial Cross-Validation  

One potential problem with ordinary cross-validation is that it treats every location in the sample 
as independent and exchangeable. That is, it assumes that leaving any subset of 10% out is as 
good as any other. However, we have spatial data, and the first law of geography states that 
everything is related, but nearby things are more related. This would imply that 10% of the data 
in a spatial cluster may behave differently than 10% randomly scattered.  

To assess the effect of this spatial correlation, we also try a spatial cross-validation. Standard 
cross-validation sets aside observations randomly to be predicted by those remaining; spatial 
cross-validation groups data into spatial clusters and then sets aside spatial clusters to be 
predicted by those remaining. That is, spatial cross-validation estimates the out-of-spatial-cluster 
prediction error of a classifier.  

This is, in general, a much more challenging prediction problem, because we have guaranteed 
that there will be no nearby (and thus presumably similar) locations in our training data.  Spatial 
cross-validation simulates prediction into an area “unlike” those we have seen before.   

In some situations, Mn/Model is used to make predictions into landscapes that have not been 
surveyed before but are similar to landscapes that have been surveyed before.  For those 
situations, ordinary cross-validation is likely to give the better estimate of prediction accuracy.  
In other situations, Mn/Model is predicting into landscapes unlike any that have ever been 
surveyed.  In those situations, spatial cross-validation is likely to give the better estimate of 
prediction accuracy.  Finally, spatial cross-validation can be useful in preventing over-optimism 
about models in regions where there are low site numbers and only certain kinds of landscapes 
(e.g. lakeshores) have been surveyed.  Models in these situations will appear to be quite accurate 
under cross-validation, but are likely quite poor under spatial cross-validation.  

Implement ten-fold spatial cross-validation as follows:  
1. Divide the data into K mutually exclusive and exhaustive spatial clusters of locations 

(sites, surveyed locations, and random locations). By default, we choose K to be 400.  
2. Randomly choose 10% of the regional clusters of locations to hold out; predict the 

locations in those clusters based on a model fitted to the other 90% of the regional 
clusters. 

3. Repeat step 2 nine times until all spatial clusters have been held out and predicted once.  
4. Use the spatially cross-validated predictions to compute criteria such as sensitivity, 

specificity, and so on.  

Several questions arise when determining how to construct spatial clusters: Should clusters have 
an equal number of locations (data points)? Should clusters cover similar areas? If a location is 
off by itself, should we force it into a cluster with other locations? How many clusters are 
appropriate? How can we automate this process? 

We make the following proposal for automated construction of spatial clusters:  
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1. Clustering will be based on the UTM easting and northing coordinates of each raster cell 
in the sample.  

2. Clustering will be done via the k-means procedure to produce a vector with elements 1 
through 400 specifying the cluster memberships. 

3. Ten-fold spatial cross-validation will be done by holding back randomly chosen sets of 
10 clusters, until all clusters have been predicted. 

Spatial cross-validation necessarily involves a choice on the part of the investigator in defining 
the spatial clusters. In particular, the above suggestion of 400 clusters is arbitrary. The behavior 
of spatially cross-validated estimates is highly dependent on the number of spatial clusters 
defined. On one extreme, the investigator may define as many clusters as there are locations, 
which is simply standard cross-validation. On the other extreme, one could choose to predict the 
western half of the locations using only the eastern half of locations. Somewhere between these 
extremes is an appropriate level of clustering to capture the effect of predicting into portions of 
landscape with which there is little or no experience. 

The k-means procedure works as follows (Hartigan 1975).  First we initialize K cluster centers 
(K is 400 by default); these could be K random points in the region of interest.  Then each data 
location is assigned to the closest cluster center.  Then the cluster center centers are moved to 
positions that minimize a measure of the total distance from all locations to the cluster centers.  
Then the locations are reassigned to centers, the centers are updated, and this is repeated until no 
further improvements are possible.  If all the locations were uniformly spread over the area of 
interest, the resulting clusters would be approximately equal in number of locations and area.  
However, in areas of high density of locations, the clusters will tend to have more locations and 
smaller areas. 

This method to construct spatial clusters is simple to implement and not completely unrealistic, 
but it may be possible to improve it substantially by instead using expert knowledge to derive the 
clusters.  For example, travel time by foot or by canoe, size of archaeological sites, foraging 
distances, change of elevation, and other factors may provide better clusters.  However, that 
expert opinion cannot (easily) be automated. 

We recommend spatial cross-validation be used as a means of feeling out the possible 
consequences of extrapolation into portions of landscape where little is known about the 
presence or absence of sites. 

2.3 Summary 

Because the costs associated with accidentally discovering an archaeological site are considered 
large compared to the costs of avoiding some locations unnecessarily, we recommend fixing a 
minimum sensitivity, as was done in Mn/Model Phase 3. Among the prediction rules attaining 
that sensitivity level, choose the rule that is most specific.  Here we recommend choosing rules 
that maximize specificity for 85% sensitivity. 

Because sensitivity and specificity based on cross-validation directly estimate the predictive 
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performance of the rule, we recommend that models be compared based on their cross-validated 
sensitivity and specificity. Similarly, thresholds for classifying locations should come from 
cross-validation. Note, however, that the actual implemented model should be estimated on all of 
the data. 
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3. Classification Methods  

This chapter presents several methods to classify locations as having sites or not.  The methods 
fall into three distinct groups: those based on logistic regression, those based on tree-structured 
regression, and those based on Bayes’ rule.  There are four sections, three describing the three 
groups of methods, and a fourth comparing the advantages and disadvantages of the methods. 
Hastie et al. (2001) is a good general reference for the methods described in this chapter, but it 
assumes the reader has some comfort with statistical methodology. 

3.1 Logistic Regression Methods  

Logistic regression methods are based on the assumption that all responses are either 1 (a site) or 
0 (a non-site).  The probability that a particular location is a site is p(x), where x represents a set 
of predictor variables such as elevation, aspect, distance to water, and so on.  Similarly, the 
probability that a location is not a site is 1-p(x).  If we have k different predictors, we represent 
these as x1, x2, ..., xk.  Since each different location could have different values for the 
predictors, locations can differ in their probabilities of being sites. 

Logistic regression assumes that the relationship between the predictors x and the probability 
p(x) takes a particular form.  The logit transform of the probability p(x) is ln[p(x)/(1-p(x))]; in 
this expression, ln() indicates the natural logarithm.  Logistic regression assumes that the logit of 
p(x) is a linear combination of the predictor variables: 

ln[p(x)/(1-p(x))] = L(x) = a0 + a1 x1 + a2 x2 + ... + ak xk 

Here x1, x2, ..., xk are the known predictor values for the location, and a0, a1, ..., ak are unknown 
coefficients that we will need to estimate.  We can call L(x) the logit of the probability or the 
linear predictor (the sum of products on the right is called a linear combination, hence linear 
predictor). 

Logistic regression takes a set of locations, each with its own 0/1 response and its own set of k 
predictor values and estimates the values of a0 through ak.  Then, for a new location with a new 
set of predictors, we can compute the linear predictor L(x) based on the coefficients we estimated 
from the training data.  We can compute the probability of the location being a site from the 
linear predictor via 

p(x) = exp(L(x))/[1 + exp(L(x))] . 

Classification is done by picking a threshold and declaring locations with p(x) greater than the 
threshold to be sites. 

3.1.1 Variable selection 

One of the issues with using logistic regression is deciding which set of predictors to use.  If we 
leave out an important predictor, then our estimates of the logit will be biased.  If we use extra, 
unneeded predictors, then our estimates of the logit will have excess variability.  Both bias and 
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excess variability are bad, so we want to reduce them.  The trick is to find a set of predictors that 
is large enough to include all the important variables without including unneeded variables.  This 
is the variable selection problem.  Within a given data set, more predictor variables will always 
fit the data better than fewer predictor variables, but using more predictor variables may make 
the predictions worse when the procedure is applied to new data.  We need to figure out what 
will work best on new data while using only the data at hand. 

Several different variable selection techniques have been proposed.  In this project, we will use 
the Bayesian Information Criterion, also known as BIC (Schwarz, 1973).  BIC works by 
combining a measure of discrepancy between the observed data and the model predictions with a 
penalty based on the number of predictors and the amount of data.  Using more predictors will 
decrease the discrepancy, but it increases the penalty.  What we do is find the subset of predictor 
variables that minimizes the BIC. 

Logistic regression with BIC model selection was the prediction method used in Mn/Model 
Phase 3. 

BIC has a theoretical property that makes its use attractive, although it is not obvious that this 
property is really active in any actual data set.  The property is this: if the “true” model is present 
as a subset of the variables we are considering, then given enough data, BIC will always choose 
the correct model. However, we're never sure that the true model is one of our possible models, 
and we're never sure that we have enough data. 

3.1.2 Model Averaging 

There may be many models (subsets of variables) with approximately equal values of BIC, that 
is, there may be many models that fit the data about equally well.  In such a case, it is not 
obvious that the model with the smallest BIC is really any better than a model with a slightly 
larger BIC. It may be that different models have different virtues that can be exploited by 
combining them. 

Since some models are better than others, we want to acknowledge that when combining various 
models. BIC can be used to approximate a posterior probability for each model; these posterior 
probabilities tell us how likely each model is to be the “true” model. The model coefficients are 
then averaged according to their approximate posterior probabilities: the best models contribute 
the most to the averaged models. In general, averaged models yield more stable predictions than 
single selected models.  

3.2 Naive Bayes 

A premise of the Mn/Model project is that sites and non-sites tend to be at locations with 
different landscape features. Ultimately, we want to use those differences to predict whether a 
location contains an archaeological site. Logistic regression yields predictions by estimating the 
probability that a location is a site given some predictors. Another approach to estimating the 
probability is to reverse it: estimate the distribution of predictors given that a location is or is not 
a site. This reversal hinges on a property of conditional probability called Bayes rule. 
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Bayes rule is written abstractly based on the probability of two events, or conditions, called A 
and B.  To make things concrete, let event A occur when a specific location is a site, and let 
event B occur when the predictors for the same specific location take a given set of values.  We 
will want an expression for the probability of A given B, that is, the probability that the location 
is a site given that the location has a certain set of predictors.   

The probability Pr(A and B) that both conditions A and B hold is equal to the probability that 
one of those conditions holds, Pr( A ), times the probability of the second condition given the 
first, Pr( B | A ),  

Pr( A and B ) = Pr( B | A ) Pr( A ) . 

That is, the probability of A and B equals the probability of B given A times the probability of A. 
Similarly, the probability of A and B equals the probability of A given B times the probability of 
B: 

Pr( A and B ) = Pr( A | B ) Pr( B ) . 

Since both of the products—Pr( B | A ) Pr( A ) and Pr( A | B ) Pr( B )—are equal to the joint 
probability, Pr( A and B), they are equal to one another 

Pr( A | B ) Pr( B ) = Pr( B | A ) Pr( A ) . 

Dividing through by Pr( B ) gives Bayes rule: 

Pr( A | B ) = Pr( B | A ) Pr( A ) / Pr( B ) . 

Bayes rule says that we can express the conditional probability of A given B in terms of the 
probability of A, the probability of B, and the reversed conditional probability—the probability 
of B given A.  For example, the probability that a location is an archaeological site given that it 
has some specified landscape features can be rewritten as the probability that the location has the 
features given that it is a site, scaled by the probabilities of having the features and being a site: 

Pr( Site | Feat. ) = Pr( Feat. | Site ) Pr( Site ) / Pr( Feat. ) . 

So, one way to approach estimating the probability of a site given some landscape features is by 
estimating the three probabilities on the right hand side—Pr( Site ), Pr( Feat. ), and Pr( Feat. | 
Site ).  

An alternative is to use the odds of being a site rather than the probability itself: 

Pr(Site | Feat.) Pr(Feat. |  Site)Pr(Site) Odds = = 
Pr(Nonsite | Feat.) Pr(Feat. |  Nonsite)Pr(Nonsite) 

Naïve Bayes makes the simplifying assumption that the distributions of different landscape 
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features are independent of each other (given site or non-site).  That is, for landscape features x1, 
x2, …, xk, assume that 

Pr(x1,x2,…,xk | Site) = Pr(x1 | Site) Pr(x2 | Site) … Pr(xk | Site) 

and 

Pr(x1,x2,…,xk | Non-site) = Pr(x1 | Non-site) Pr(x2 | Non-site) … Pr(xk | Non-site) 

Then, the odds are 
Pr(x1 | Site) Pr(x2 | Site) Pr(xk | Site) Pr(Site) Odds = ... 

Pr(x1 | Nonsite) Pr(x2 | Nonsite) Pr(xk | Nonsite) Pr(Nonsite) 

This method is “naive” because the simplifying independence assumption is almost surely 
wrong. Nevertheless, the estimator often performs quite well (see Hand and Yu (2001) for 
examples and possible explanations). 

Estimating Pr( Site ) is not really an issue. We either use a prior probability or the sample 
proportion of sites. The tricky part is how to estimate the conditional probabilities Pr( x1 | Site ) 
and Pr( x1 | Non-Site ).  We do this using the data in the training sample. 

We use a kernel density estimator to approximate the conditional probabilities Pr(x1| Site ) and 
Pr(x1 | Non-Site ). A kernel density estimate is like a smoother version of a histogram. It has all 
the flexibility of a histogram, but gives a finer estimate of the distribution.  

Naïve Bayes can be related back to logistic regression. The logit of a probability is the log of the 
odds.  Logistic regression assumes that this logit is a constant plus a sum of terms of the form aixi 
--- that is, each predictor enters as a linear function.  If we take the log of the odds for the naïve 
Bayes estimate, we get a constant plus a sum of terms of the form hi(xi), where  

hi(xi) = ln[ Pr(xi | Site) ] - ln[ Pr(xi | Non-site) ] 

Naive Bayes makes weaker assumptions than logistic regression about how the log odds of a site 
depend on the location's landscape features. However, we pay for the added flexibility with a 
loss of efficiency: it is harder to estimate a density function than it is to estimate a constant. If the 
logistic assumptions are correct, logistic regression is more efficient than naïve Bayes. If naive 
Bayes improves on logistic regression, it is evidence that we should consider a more flexible 
relationship between the predictors and the odds that there is a site. 

3.3 Tree-Based Methods 

Tree methods make predictions by repeatedly splitting the data into smaller and smaller subsets 
and then predicting based on the average response in each of the final subsets.  The splitting 
method is called recursive partitioning.  First, the data set is split into two groups.  Then each of 
these groups is split into two groups, and so on.  Each split is based on a single predictor variable 
and a split point, with data having predictor values less than the split point placed in one 
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subgroup and all other data placed in the other subgroup.  The splits are done to make the 
responses in each subgroup as homogeneous as possible.  The idea is simple, and the heart of the 
algorithm is deciding what size tree to use (that is, how many splits to make). Breiman et al 
(1984) is a standard monograph on trees within Statistics. 

The most straightforward way to make sense of trees is to see an example, as in Figure 3.1. 

Figure 3.1: A simple regression tree. 

In this example, the first split is made in the variable rdedblk1 (distance to the nearest large lake 
[square root]). The data are divided into locations such that rdedblk1 is less than 16.5 and 
locations such that rdedblk1 is greater than or equal to 16.5. The second split is made within the 
group of locations that have rdedblk1 greater than or equal to 16.5. This time the split is made in 
the variable rwtpinou (distance to nearest permanent wetland inlet/outlet [square root]). These 
data are divided into locations such that rwtpinou is less than 113.5 and locations such that 
rwtpinou is greater than or equal to 113.5. Each split is binary (a measurement is either below a 
threshold or not), and each split is made within a single variable (first rdedblk1, then rwtpinou). 

The tree has three terminal nodes. All of the observations in a terminal node have the same 
estimated probability. In this example, half of the locations with rdedblk1 less than 16.5 are sites, 
so we estimate a response of 0.50 for all locations with rdedblk1 less that 16.5.  Similarly, half of 
the locations with rdedblk1 greater than or equal to 16.5 and rwtpinou less than 113.5 are also 
sites, so the estimated response is 0.5.  On the other hand, only 4 out of 50 locations with 
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rdedblk1 greater than or equal to 16.5 and rwtpinou greater than or equal to 113.5 are sites, so 
this subset has an estimated response of 0.08. 

With only three terminal nodes and only two estimated probabilities, this is an unusually stumpy 
tree. However, even a much larger tree will assign only a few distinct probability estimates when 
compared, for example, to logistic regression. Because all of the locations in a node have the 
same estimated probability, trees make very coarse probability estimates.  

The compensation for making very coarse estimates comes in the form of versatility. Trees do 
not assume any particular model for the data; they simply divide the sample into dichotomies 
that seem promising.  

As with the other procedures discussed here, trees have a Goldilocks problem: large trees overfit 
the data (leading to excess variability in the estimates), small trees under fit the data (missing 
important features and causing bias), and we want a tree that's just right. Thus, tree size is a 
tuning parameter. Trees grow until a minimum node size is reached.  In our application, all nodes 
of the tree (subsets of data) must contain at least 20 locations.  We then prune the tree: cut back 
branches that appear to overfit the data. Pruning uses an additional ten-fold cross-validation 
separate from that we do to assess true and false positive rates. 

Trees are grown one split at a time. Branches are formed by optimizing individual splits. This is 
a “greedy” algorithm that tries to get as much as it can right now by optimizing this split while 
ignoring all subsequent splits.  This algorithm does not necessarily optimize the whole tree. 
Because the partitioning is recursive, each split is contingent on the previous partitions. Slight 
variations in the data may lead to noticeably different trees. In order to deal with these issues, it 
is common to grow a forest of trees and then combine them in some fashion. 

3.4 Perturb and aggregate 

Trees are flexible and effective predictors, but they suffer from two problems: there are relatively 
few distinct predicted values (coarseness of predicted values), and the tree produced is very 
sensitive to minor features of the data.  Researchers have proposed several modifications to the 
basic tree approach that attempt to solve these problems.  All of these modification work by 
repeatedly making slight perturbations to the data, producing a tree for each perturbed data set, 
and then combining the trees so produced.  The names of these procedures are rather whimsical: 
bagging, boosting, bumping.  Methods of this type are called perturb and aggregate methods, and 
the collection of trees produced is sometimes called a forest. 

The principal method to perturb the data is the bootstrap (Efron and Tibshirani 1993).  Consider 
a data set of size 1000. A bootstrap sample is a random sample of size 1000 taken from the 
original data set with replacement.  Each of the original data observations may occur, 0, 1, 2, or 
more times in the bootstrap sample.  In effect, this is a random re-weighting of the original data.  
Because the bootstrap sample was taken at random, it is representative of the original data and 
predictors built using the bootstrap sample should be applicable to the original data.  

Depending on how we apply them, bootstrap replicates of the tree procedure can be used to: 
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1. Avoid overfitting to accidents of the sample, 
2. Reinforce patterns that persist despite small changes in the data. 
3. Draw finer distinctions in estimated probabilities. 

Bumping (Tibshirani and Knight, 1999) and bagging (Breiman, 1996) are two methods based on 
bootstrapped trees. 

Bootstrapping re-weights the data set at random. We may also consider more systematic re-
weighting of the data. Boosting—in particular, AdaBoost (Freund and Schapire, 1996)—is a 
method that utilizes systematically re-weighted trees.  In boosting, observations that were poorly 
predicted in one step are given higher weight in the next step, so that the procedure eventually 
concentrates on the difficult to predict cases. 

3.4.1 Bumping 

An important way that trees are sensitive to the particulars of the data at hand is that they make 
short-sighted partitions. The algorithm doesn't know what the consequences of it's initial split 
will be for the subsequent partitions. Consequently, the resulting tree may overlook important 
features. 

Bumping (Bootstrap UMbrella of Predictors) first creates several trees by re-sampling the data 
via the bootstrap and fitting to the bootstrap samples. It then chooses the single tree with the best 
performance. Since the result is a single tree, it is interpretable as a tree. 

Bumping can help a classifier avoid getting stuck in a poor solution. That is, if there is a good 
single-tree representation for the data, bumping has more opportunities to find it—or, at least, 
not to miss it by an accident of the sample.  However, because it produces a single tree, bumping 
still produces a coarse prediction. 

Note that bumping depends on random perturbations of the sample. Running the same procedure 
twice on the same data set is liable to create two different estimates. It also depends on how 
many perturbations we choose to make. 

3.4.2 Bagging 

Bagging (Bootstrap AGgregation) creates several trees by re-sampling the data via the bootstrap 
and fitting trees to the bootstrap samples, but bagging predicts using the average of the 
predictions from the multiple trees. Averaging the perturbed trees results in a more stable 
predictor. Similarities across trees reinforce one another, but accidents of the algorithm tend to 
cancel one another out. Averaging also allows for greater nuance in the predicted probabilities 
through less coarse predictions. 

Bagging maintains all the flexibility of trees while generating more nuanced and more stable 
predictors, but the result is no longer interpretable as a tree. In fact, it may be difficult to interpret 
the results at all. 

As with bumping, bagging depends on random perturbations of the sample. Running the same 
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procedure twice on the same data set is liable to create two different estimates.  The user must 
also choose the number of trees to produce. 

3.4.3 Double bagging 

Double bagging runs the bagging prediction technique twice.  First run bagging to predict the 
response Y with a bagging prediction y ˆ 1.  Then compute residuals r = Y − y ˆ 1.  Now use the same 
predictors as before, but use bagging to estimate the residuals r obtaining a second bagging 
prediction y ˆ 2.  Our final double bagging prediction is y ˆ = y ˆ 1 + y ˆ 2 . 

When applied to Mn/Model data, a double bagging prediction using K trees in each of two 
passes generally gives slightly better predictions than a single bagging prediction using 2K trees.  
It may seem odd that refitting the residuals can give improved fits, but that is not uncommon for 
nonlinear procedures. 

3.4.4 Boosting 

Boosting is another method that creates a predictor by averaging a collection of trees. However, 
boosting does not form the collection of trees by re-sampling. Instead, it forms a sequence of 
trees by re-weighting misclassified observations; observations misclassified in one tree have 
greater weight, and thus a better chance of being correctly classified, in the next tree. The 
resulting classifier is an average of the sequence of trees in which trees with lower error rates 
receive more weight. 

The basic recipe for boosting is as follows: 
1. Fit a tree to the data. 
2. Weight the tree according to its misclassification rate—trees with fewer errors receive 

more weight. 
3. Re-weight the data so that: 

(a) The incorrectly classified observations receive more weight. 
(b) The correctly classified observations receive less weight. 

4. Repeat. 

If the recipe repeated forever, we would never get a predictor. Therefore, the number of 
iterations to use is a tuning parameter that needs to be specified by the user.  Also, the re-
weighting scheme needs to be specified. 

The observations that our tree mislabels are harder to account for. So, the next pass puts more 
emphasis on trying to get those right. That is, it assigns increased weight to the misclassified 
locations and decreased weight to correctly classified locations. It then fits a tree to the re-
weighted data. Each iteration focuses its attention on those observations that the previous rule 
misclassified. The result is a collection of classifiers with different strengths. In fact, each tree is 
designed to be strongest where the previous tree was weak. Because the trees have focused their 
attention on different parts of the sample, their strengths tend to complement one another. 

The boosted classifier averages the trees together in order to combine their various strengths, like 

22 



 

 

 
 

 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 
  

 

 
 

 

bagging. Unlike bagging, boosting assigns different weights to the trees according to their 
various error rates. Furthermore, there is nothing random about boosting; it does not rely on 
bootstrapping the sample. 

Boosting suffers from the same issues of interpretation as bagging. Averages of trees do not 
result in new trees. The boosted classifier is not clearly expressible as an equation or as a tree. It 
often results in a very effective predictor, but an uninterpretable predictor. 

3.5 Pros and Cons 

This section summarizes advantages and disadvantages of each of the prediction methods 
outlined above.  

3.5.1 Logistic Regression with BIC Selection 

• Because the form of the model is assumed known up to a set of coefficients, logistic 
regression is readily interpretable. 

• For the same reason, logistic regression is very restrictive. If the true behavior of the 
population is well approximated by one of the specified models, this is not an issue. 
However, this procedure has no way to discover patterns in the data. 

• Because a single model is selected, only a few of the predictors will tend to have non-
zero coefficients. This tends to ease interpretation. 

• Because of the large number of possible models to consider, selecting a logistic 
regression using BIC will tend to be very slow. 

3.5.2 Averaged Logistic Regression  

• Because a linear combination of linear models is another linear model, averaged logistic 
regression is also readily interpretable and similarly restrictive. 

• Because we average over several models, many predictor variables will tend to have non-
zero coefficients. 

• Averaged models tend to be more stable predictors than individual models. 
• Because of the large number of possible models to consider, averaging logistic 

regressions will tend to be very slow. 

3.5.3 Naive Bayes 

• Naive Bayes fits a more flexible model than logistic regression, but assumes more form 
than trees. 

• The resulting “model” is difficult to interpret than logistic regression because the 
estimated density functions g1, ..., gk are unrestricted. 

• Density functions are difficult to estimate and may require a lot of data to estimate well. 

3.5.4 Trees 
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• Trees are highly interpretable. 
• Trees have a very flexible form. 
• Trees are computationally convenient and efficient. 
• Trees are discrete, which limits our ability to distinguish between locations. 
• Trees are highly sensitive to particulars of the sample, which may limit their ability to 

find interesting patterns and affects their stability as predictors. 

3.5.5 Bumping 

• Bumping results in a tree, so it inherits the flexibility and interpretability but also the 
discreteness of trees. 

• Bumping guards against overlooking good predictors because of the myopic way that 
trees are grown—one split at a time.  

• Bootstrap re-sampling can be computationally expensive. 
• Estimates are not unique. 

3.5.6 Bagging 

• Bagging inherits the flexibility of trees. 
• Bagging alleviates the discreteness of trees. 
• Bagging generally results in very stable predictors. 
• Bagged trees are basically uninterpretable in form. 
• Bootstrap re-sampling can be computationally expensive. 
• Estimates are not unique. 
• Double bagging improves prediction, but at the cost of additional computation. 

3.5.7 Boosting 

• Like bagging, boosting inherits the flexibility of trees, fits a smoother set of probabilities, 
and generally results in very stable predictors. 

• Also like bagging, boosted trees are basically uninterpretable. 
• Boosting requires tuning by the user. 
• There is no existing function in S-plus for boosting. Furthermore, it creates a very 

complicated prediction rule making it difficult to translate into Python. This makes 
boosting an extremely inconvenient method to implement. We will not attempt to 
implement boosting unless it clearly outperforms alternative methods. It's too easy to 
make errors and too hard to find them. 
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4. Comparison and Recommendations 
The only true test of a prediction method is how well it predicts.  Thus, we will compare the 
prediction methods described in the previous chapter by applying them to Mn/Model data and 
measuring the quality of their predictions.  As described in Chapter 2, our primary criteria will be 
the false positive rates obtained via cross-validation for 70% and 85% true positive rates.  A 
secondary criterion will be the area under the ROC curve.  Gain curves and other graphical 
comparisons were made, but they will not be described or displayed here in the interests of 
space. 

In order to compare classification methods, we fit a model using each method to data from three 
regions in eastern Minnesota: Big Woods, Anoka Sand Plain, and Mille Lacs Uplands. For these 
regions, two data sets were considered—an original set and an extended set with approximately 
twice as many random locations. Table 4.1 summarizes the number of sites and random locations 
in each data set.  

  Original   Extended 
Big Woods Anoka Mille Lacs Big Woods Anoka Mille Lacs 

Sites 862 724 1037 863 728 1037 
Random 1615 1112 3203 3402 2247 6427 

Table 4.1: Number of Sites and Random Locations by Data Set 

Each classification method orders locations according to their predicted probability of a site. 
Using these orderings, we call the set that captures 70% of all sites High Probability. The set that 
captures the next 15% of sites we call Medium Probability.  The High Probability locations are 
the locations classified as sites to attain a 70% true positive rate. The High Probability and 
Medium Probability locations together give an 85% true positive rate. Within these categories, 
the lower the false positive rate, the better the method. 

In the examples below, bumping and bagging were done with 11 trees: the original data and 10 
bootstrap replications.  Double bagging was done with 11 trees per pass.  Calculations for 
boosting were made external to S-Plus in a program called R. 

Tables 4.2, 4.3, and 4.4 collect the results of applying the predictors to Phase 4 site data (the 
mod4.site subset, which includes site centroids, secondary site locations, and random points).  
Tables 4.2 and 4.3 show the false positive rates at 70% and 85% true positive rate, respectively.  
Table 4.4 shows the areas under the ROC curves.  All results are based on ten-fold cross-
validated predictions. 
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 Original  Extended 
Method Big Woods Anoka Mille Lacs Big Woods Anoka Mille Lacs 
BIC Logit .19 .06 .03 .18 .06 .03 
BMA Logit .19 .06 .03 .18 .07 .03 
Naïve Bayes .19 .07 .04 .19 .06 .04 
Tree .17 .11 .02 .20 .08 .01 
Bumping .18 .10 .02 .19 .07 .01 
Bagging .15 .05 .01 .12 .04 .01 
Boosting .14 .05 
Double Bag. .12 .03 .01 .09 .03 .01 

Table 4.2: Cross-validated False Positive Rates for 70% True Positive Rate.

 Original  Extended 
Method Big Woods Anoka Mille Lacs Big Woods Anoka Mille Lacs 
BIC Logit .35 .15 .08 .34 .15 .07 
BMA Logit .34 .14 .08 .33 .15 .07 
Naïve Bayes .36 .20 .11 .37 .18 .11 
Tree .36 .18 .07 .36 .21 .06 
Bumping .37 .19 .08 .38 .20 .06 
Bagging .29 .13 .04 .26 .12 .04 
Boosting .28 .12 
Double Bag. .24 .11 .03 .20 .11 .03 

Table 4.3: Cross-validated False Positive Rates for 85% True Positive Rate.

 Original  Extended 
Method Big Woods Anoka Mille Lacs Big Woods Anoka Mille Lacs 
BIC Logit .827 .907 .954 .831 .904 .956 
BMA Logit .829 .908 .955 .833 .905 .957 
Naïve Bayes .821 .895 .939 .825 .900 .938 
Tree .820 .875 .947 .807 .880 .956 
Bumping .809 .878 .945 .812 .887 .950 
Bagging .862 .929 .973 .875 .934 .976 
Double Bag. .875 .939 .971 .890 .940 .973 

Table 4.4: Cross-validated areas under the ROC curve. 

26 



 

 

 

 

     

     

 

 

Double bagging is consistently the best, followed by boosting (where available), and bagging.  
After these three, there is usually a large step down in quality of prediction, although which 
method is the next best varies between data sets. Because boosting is more difficult to implement 
in S-Plus and GIS, and because boosting is sandwiched between bagging and double bagging in 
terms of quality of prediction, boosting will not be considered further.   

Examination of Tables 4.2 through 4.4 also shows that bagging and double bagging consistently 
benefit from additional random locations.  This suggests that regional models in Mn/Model 
Phase 4 should be fit with more random locations than was done in Phase 3. 

If we use bagging or double bagging, we must decide how many trees to use.  In general, more 
passes is better (double better than single, triple better than double), and more trees per pass is 
better, but there are diminishing returns for both the number of passes and the number of trees.  
In addition, implementing the bagging procedures in GIS is possible, but tedious, and doubling 
the number of trees used doubles the amount of effort required to implement them.  Therefore, 
control on the number of trees is needed. Table 4.5 shows the cross-validated false positive rates 
at 85% true positive rate for various numbers of passes (single, double, and triple bagging) and 
numbers of trees per pass.  For single bagging, there is relatively little improvement after 10 or 
11 trees.  Double and triple bagging may improve the results slightly for the same total number 
of trees, but they show the largest improvements when using two or three passes with a fairly 
large number of trees each. 

Bagging 
Single 
Single 
Single 
Single 
Single 
Single 

Trees/pass 
3 
6 
11 
16 
21 
24 

Big Woods 
.33 
.30 
.27 
.27 
.27 
.23 

Big Woods ext. 
.34 
.28 
.26 
.24 
.24 
.25 

Anoka 
.19 
.14 
.12 
.14 
.12 
.12 

Double 5 .27 .25 .12 
Double 6 .29 .24 .11 
Double 8 .28 .25 .11 
Double 10 .26 .22 .12 
Double 12 .24 .22 .12 

Triple 
Triple 
Triple 

8 
10 
12 

.24 

.24 

.25 

.22 

.22 

.22 

.09 

.11 

.10 

Table 4.5: Cross-validated False Positive Rates for 85% True Positive Rate for 
various numbers of passes and trees per pass. 

Based on its performance in these regions and the resources required to implement the prediction 
in GIS, we recommend that Bagging with 11 total trees be used to classify locations.  

27 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Example 

In this example, we will go through a mock analysis using the new Phase 4 S-Plus functions and 
extended data from the Big Woods region.  (In the software, regions are indicated by a region 
abbreviation, which for the extended Big Woods is bgwd4ex.  This abbreviation will appear 
repeatedly.) We will look at a subset of the output produced and describe how to interpret it.  
Much more complete documentation on these functions and the output is available in the “User's 
Guide for Mn/Model Phase 4 S-Plus Software.”  

In the example below, S-Plus commands appear after a prompt “> “, and commands, variable 
names, and output are shown in a monospaced font. 

The first step is to read the data into S-Plus using the mnmodel.readdata() function: 

> mnmodel.readdata("bgwd4ex",rootvars=”none”) 
Variables in bgwd4ex.data.all are: 
 [1] "Id"  "X"  "Y"  "Abl"  "Alluv" 
 [6] "Blg"  "Ded.blk1"  "Ded.cors"  "Ded.or30"  "Ded.priv" 
[11] "Ded.swm"  "Dedbwet1"  "Dint"  "Dir.ww"  "Dislksed" 
[16] "Dis.asbi"  "Dis.br"  "Dis.bw"  "Dis.con"  "Dis.hdw" 
[21] "Dis.maj"  "Dis.min"  "Dis.mix"  "Dis.ok"  "Dis.pap" 
[26] "Dis.pibf"  "D.dra30"  "Dis.pr"  "Dis.rb"  "Dis.sug" 
[31] "Ht90"  "Lk1.size"  "Maj.area"  "Min.area"  "Mrdiv990" 
[36] "Plk1size"  "Rel90a"  "Rgh90"  "Slp"  "Terr" 
[41] "Vaw1"  "Vpw1"  "Lk.inout"  "Lkpinout"  "Wtpinout" 
[46] "Site.type"  "Phase3"  "Phase4"  "sin.Dir.ww" "cos.Dir.ww" 

Variables in bgwd4ex.subsets are: 
 [1] "p3.cent"  "p3.sec"  "p3.neg"  "p3.aux" 
 [5] "p4.cent"  "p4.sec"  "p4.line"  "p4.poly" 
 [9] "p4.surv"  "p4.aux"  "all.rand"  "no.rand" 
[13] "all.locations" "all3.sites"  "all4.sites"  "all3.survey" 
[17] "all4.survey"  "mod3.cent"  "mod3.site"  "mod3.surv" 
[21] "mod4.cent"  "mod4.site"  "mod4.surv"  "CVsets" 
[25] "SCVsets"  "clusters" 

Variables in bgwd4ex.transformed.vars are: 
[1] "Dir.ww" 

Total number of locations: 9420 

    Number of Phase 4 centroid sites: 712 
    Number of Phase 4 secondary sites: 111 
    Number of Phase 4 line sites: 0 
    Number of Phase 4 polygon sites: 40 
Total number of Phase 4 sites: 863 

    Number of Phase 3 negative surveys: 1274 
    Number of Phase 4 DOT surveys: 3710 
    Number of Phase 4 sites as surveys: 171 
Total number of Phase 4 non-site survey locations: 5155 

Total number of random: 3402 

Total number for Phase 4 site-centroid models: 4114 
Total number for Phase 4 site models: 4265 
Total number for Phase 4 survey models: 9420 

The function establishes some S-Plus data sets and prints some informative output about the 
data.  First, it prints the names of all the variables present in the data set.  Next, it prints the 
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names of subsetting variables that it created to permit analysis of various subsets of data.  The 
subsetting variables most likely to be used are mod4.site and mod4.surv, which indicate 
the data to be used in Phase 4 models of potential for sites and survey bias, respectively.  Third, 
it prints the names of any variables that it transformed.  For example, direction variables are 
converted to their sines and cosines, and, by default, a list of variables with distributions skewed 
to the right are transformed to their square roots (there is no need to use the square roots when 
using tree-based methods such as bagging).  Finally, it prints out counts of data falling into 
different categories: total number, different types of sites, different types of negative surveys, 
random points, and the number of points used Phase 4 site and survey models. 

The next step is optional.  A user can request that descriptive statistics and graphics be produced 
for the variables in the data set.  Some of these summaries are done separately for sites, negative 
surveys, and random points, so this step should only be done on subsets that contain all three 
types.  Usually this means that the selected subset will be mod4.surv.   

This step produces many pages of output and many plots.  To manage this avalanche, results 
from different analyses are placed in different directories on the computer.  The user indicates 
the directory with a user-selected label.  We will use the label “example”, so output will appear 
in the directory BGWD4NEW.example.summaries.  (Note: you should use different labels 
for site and survey models; if you don't, the results of your second analysis will over write those 
of your first analysis.) 

Variable summaries are produced using the function mnmodel.var.summaries().  We 
must indicate the subset we will use (mod4.surv) and the label we want (example). 

> mnmodel.var.summaries("BGWD4NEW",mod4.surv,"example") 

There is no output visibly printed by S-Plus, because all output has been redirected to files in the 
BGWD4NEW.example.summaries directory.  The first summary is descriptive statistics.  All 
descriptive statistics are placed in the file variable.summary.txt in the output directory.  
The output to this file begins with means and standard deviations of the variables, reported 
separately for sites, negative survey points, and random points.  In our example, the file begins 
with Abl (elevation) and Alluv (on alluvium) before continuing through the remainder of the 
variables. 

Means and standard deviations of variables: 

, , Abl 
         Sites Negative Surveys Random Points 
mean 942.92816  927.4675  987.26543 
  sd  91.70153  98.5058  77.79021 

, , Alluv 
          Sites Negative Surveys Random Points 
mean 0.07763615  0.09253152  0.02557319 
  sd 0.26775334  0.28980292  0.15788138 

From this output we can see the mean elevations for sites, negative surveys, and random points 
are 942.9, 927.5, and 987.3 respectively, and the standard deviations of elevation for these 
subsets are 91.7, 98.5, and 77.8.  Thus sites and negative surveys generally occurred at lower 
elevations (probably near water), and there is a bit less variability in the elevations of the random 
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points. 

After means and variances come two-sample Wilcoxon rank-sum tests for each variable 
comparing site data to random location data, and negative survey data to random location data.   
The two-sample Wilcoxon test is a nonparametric test of location (center or median). That is, it 
asks whether there is evidence that two groups (that are otherwise comparable) are centered at 
different values, and the test does not rely on the shape of the underlying group distributions.  
The p-value answers the question “Assuming that the two groups really had the same center, how 
likely are we to have observed data with centers this far apart (as measured by the Wilcoxon)?” 
Small p-values indicate that the groups have different centers.  For both comparisons, the 
Wilcoxon statistic and the p-value are reported.  Our file continues 

Wilcoxon tests of variables: 

, , Abl 
         Sites vs Random Surveys vs Random  
Wilcoxon  -1.350454e+01  -2.957183e+01 
 p-value  1.470355e-41  3.442133e-192 

, , Alluv 
         Sites vs Random Surveys vs Random  
Wilcoxon  7.321045e+00  1.221593e+01 
 p-value  2.460474e-13  2.555507e-34 

We show only the first two variables, and we see the results of comparing site to random and 
negative survey to random for elevation and alluvium.  All of these p-values are tiny, so there is 
overwhelming evidence against the four hypotheses that (for this region) these variables are 
equally distributed for sites, negative surveys, and random points.  For a site model, this is all to 
the good, because the whole foundation of Mn/Model is that sites are generally located on 
recognizable landscapes.  However, this also shows that there is bias in the selection of survey 
locations. 

Finally, the Spearman rank correlation matrix of the variables based on all of the data is printed.  
The Spearman rank correlation coefficient indicates how two variables vary together: positive 
values indicate that they vary directly (go up and down together); negative values indicate that 
they vary inversely (one goes up while the other goes down). The further the coefficient is from 
zero, the stronger the relationship. The rank correlation coefficient is bounded between one and 
negative one.  A subset of the correlation matrix is presented here: 

Spearman rank correlations: 
              Abl  Alluv  Blg Ded.blk1 Ded.cors  
       Abl  1.000 -0.415  0.013  -0.307  0.161 ... 
     Alluv -0.415  1.000  0.063  0.324  -0.108 ... 
       Blg  0.013  0.063  1.000  0.021  0.074 ... 
  Ded.blk1 -0.307  0.324  0.021  1.000  0.131 ... 
  Ded.cors  0.161 -0.108  0.074  0.131  1.000 ... 
             .  .  .  .  .  . 
             .  .  .  .  .  . 
             .  .  .  .  .  . 

We see, for example, that Abl (elevation) is negatively related to Ded.blk1 (the distance to edge 
of the nearest big lake)---locations at higher elevations are closer to big lakes. 

After summary statistics, mnmodel.var.summaries() produces a pdf graphics file for each 
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variable.  This file contains a stack of three histograms showing the distribution of the variable 
separately for sites, negative surveys, and random locations.  Histograms represent data by the 
area of the bars in the plot, so the bigger the bar at a given value of the variable, the more data 
are in that range. The files are named var.1.pdf, where “var” is the variable.   

Figure 5.1 shows Abl.1.pdf (elevation).  In this figure, we can see that negative survey points 
have a fairly sharp peak around 950 to 970 feet of elevation, but sites are more spread out in the 
middle.  All three groups show a tail on the left, indicating a fair number of points at elevations 
considerably lower than the bulk of the data. 

Figure 5.1.  Sample histograms for elevation separately for sites, negative 
surveys, and random locations. 

It is now time to fit a model.  To do this we use the function mnmodel.fit().  This function 
needs to know what dataset we are using, what subset (type of model) we are doing, what label 
to use for output, and which fitting method to use.  Thus, a typical command might be 

> mnmodel.fit("bgwd4ex",mod4.surv,"example","bagging") 
Constructing bgwd4ex.example.results 

Available predictors: 
 [1] "Id"  "X"  "Y"  "Abl"  "Alluv" 
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 [6] "Blg"  "Ded.blk1"  "Ded.cors"  "Ded.or30"  "Ded.priv" 
[11] "Ded.swm"  "Dedbwet1"  "Dint"  "Dir.ww"  "Dislksed"   
[16] "Dis.asbi"  "Dis.br"  "Dis.bw"  "Dis.con"  "Dis.hdw"    
[21] "Dis.maj"  "Dis.min"  "Dis.mix"  "Dis.ok"  "Dis.pap"    
[26] "Dis.pibf"  "D.dra30"  "Dis.pr"  "Dis.rb"  "Dis.sug"    
[31] "Ht90"  "Lk1.size"  "Maj.area"  "Min.area"  "Mrdiv990"   
[36] "Plk1size"  "Rel90a"  "Rgh90"  "Slp"  "Terr"       
[41] "Vaw1"  "Vpw1"  "Lk.inout"  "Lkpinout"  "Wtpinout"   
[46] "Site.type"  "Phase3"  "Phase4"  "sin.Dir.ww" "cos.Dir.ww" 

Total number of locations: 9420  
Total number of sites: 863  
Total number of survey points: 5155  
Total number of non-random: 6018  
Total number of random: 3402  
Eliminating non-predictors 

Eliminating previously transformed variables from predictors: 
[1] "Dir.ww" 

Eliminating collinear and/or nearly constant variables from predictors: 
[1] "Dis.mix" 

Fitting with these variables: 
[1] "Abl"  "Alluv"  "Blg"  "Ded.blk1"  "Ded.cors" 
 [6] "Ded.or30"  "Ded.priv"  "Ded.swm"  "Dedbwet1"  "Dint" 
[11] "Dislksed"  "Dis.asbi"  "Dis.br"  "Dis.bw"  "Dis.con" 
[16] "Dis.hdw"  "Dis.maj"  "Dis.min"  "Dis.ok"  "Dis.pap" 
[21] "Dis.pibf"  "D.dra30"  "Dis.pr"  "Dis.rb"  "Dis.sug" 
[26] "Ht90"  "Lk1.size"  "Maj.area"  "Min.area"  "Mrdiv990" 
[31] "Plk1size"  "Rel90a"  "Rgh90"  "Slp"  "Terr" 
[36] "Vaw1"  "Vpw1"  "Lk.inout"  "Lkpinout"  "Wtpinout" 
[41] "sin.Dir.ww" "cos.Dir.ww" 

Doing bagging ... done. 
Cross-validating, please be patient: 1  2  3  4  5  6  7  8  9  10  done. 

Spatially cross-validating, please be patient: 1  2  3  4  5  6  7  8  9  10  done. 

The output begins with a repetition of summary information about variables present, variables 
transformed, variables used, and how many data of various types are used. Then it gets down to 
the business of fitting the model.  Because we are doing ordinary and spatial cross-validation, it 
actually does the fitting 21 times.  This could take some time, so it prints progress information 
letting you know which fit it is doing. 

Now that we've fit the model, we need to get summaries of how well the model worked as well 
as information we will use to actually implement the model in GIS.  We use the 
mnmodel.fit.summaries() function to do this.  The ordinary usage of this function takes 
three arguments: a region, a label, and a method.  You may optionally set the a priori probability 
for sites, which will affect only the gain plots shown below.  The default for the a priori 
probability is .01. 

> mnmodel.fit.summaries(“BGWD4NEW”,”example”,”bagging”) 

Output from mnmodel.fit.summaries() goes into the 
REGIONABBR.label.summaries directory, which in our example is 
bgwd4ex.example.summaries .  The output consists of a text file named 
method.summary.txt (bagging.summary.txt in the example) and either 8 or 13 
summary graphics in pdf format, the number depending on whether spatially cross-validated 
predictions are available. 
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Let us begin with a discussion of the graphs, which are produced for the predictions, cross-
validated predictions, and, if available, spatially cross-validated predictions.  For these kinds of 
predictions we produce cumulative plots, ROC curves, and gain curves (Chapter 2).  For cross-
validated data, we also produce graphs with multiple cumulative curves and ROC curves, one for 
each cross-validation subset.  The graphs are stored in the files with the names: 

appcumpred.method.pdf, appgain.method.pdf, approc.method.pdf. 

cvcumpred.method.pdf, cvgain.method.pdf, cvroc.method.pdf, cvcumpred.multi.method.pdf, 
cvroc.multi.method.pdf. 

scvcumpred.method.pdf, scvgain.method.pdf, scvroc.method.pdf, scvcumpred.multi.method.pdf, 
scvroc.multi.method.pdf. 

The “app” prefix stands for “apparent” and indicates results for predictions constructed using all 
the data.  The “cv” and “scv” prefixes indicate results for cross-validated and spatially cross-
validated predictions.  The “multi” indicates separate curves for each cross-validation subset.  In 
all cases, the “method” is replaced with the method of interest, for example, 
approc.bagging.pdf. The cumulative predicted plots allow us to see the actual values 
predicted for different locations and to compare the distributions of predictions for sites and non-
sites.  An example cumulative predicted plot is shown in Figure 5.2. 

We see in Figure 5.2 two bands of points, the lower band for random points and the upper band 
for non-random points (sites and surveys).  The curves show the cumulative distributions, that is, 
fractions of points with values less than or equal to the current value, for random points (dashed) 
and sites (solid).  For a good prediction, the random points should cluster to the left and their 
cumulative should rise steeply and then flatten near the top of the graph; and the sites should 
cluster to the right, with their cumulative staying low and then rising sharply on the right.  The 
greater the area between the two curves, the better the prediction method is doing.   

The “multi” form of the plot shows the same points, but the cumulative curves are plotted 
separately for the 10 cross-validation subsets.  This illustrates the variability in the quality of the 
prediction.  This is illustrated in Figure 5.3. In this example, the curves are fairly stable across 
the subsets. 
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Figure 5.2.  Cumulative apparent predicted plot showing separate curves for sites 
(solid) and non-sites (dotted). 

Figure 5.3.  Multiple form of cumulative predicted plots, showing separate curves 
for each cross-validation subset. 
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The ROC curve plots the true positive rate (vertical axis) against the false positive rate 
(horizontal axis) for a large number of potential thresholds.  As you adjust these thresholds, you 
change the fractions of sites and non-sites that are classified as sites (these are the true and false 
positive rates).  The curve starts in the lower left hand corner and moves to the upper right hand 
corner.  Ideally, the curve should move up to the top very quickly and then move along the upper 
boundary.  This gives us maximum true positive rate with minimum false positive rate.  The 
diagonal line corresponds to randomly guessing site versus random.  The false positive rates for 
.7 and .85 true positive rates are highlighted.  While our principal figure of merit is the false 
positive rate at a .85 true positive rate, the area under the ROC curve gives an overall summary 
of the quality of the prediction.  Figure 5.4 shows the ROC curve based on cross-validated 
predictions. 

The “multi” form of the graph plots the ROC curve separately for each cross-validation subset.  
Figure 5.5 shows an example of these multiple ROC curves for the same data shown in Figure 
5.4.  Again we see that the ROC curves are fairly stable. 

The final graph is the gain curves.  These curves are already somewhat complex, so we only plot 
them for the full data set, and not separately by cross-validation subsets.  The gain curve depends 
on the a priori probability used when the summary function was called.  The gain referred to in 
the name of the curve is the ratio of the posterior probability of a location being a site to the prior 
probability of a location being a site.  “Posterior” means after seeing the data and doing the 
classification.  The upper curves are probabilities for locations that were classified to be sites; we 
want these curves to be as high as possible so that as large a fraction as possible of those 
locations classified as sites actually are sites.  Conversely, the lower curves are probabilities for 
locations classified as non-sites; we want these curves to be as low as possible.  The curves show 
these ratios as a function of the true and false positive rates. 
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Figure 5.4.  ROC curve for cross-validated predictions. 
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Figure 5.5.  ROC curves separately for each cross-validation subset. 
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Figure 5.6.  Gain curves for sites and non-sites. 
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In addition to graphical summaries, we also have text/numeric summaries of the results in a text 
file named method.summary.txt (bagging.summary.txt in the example).  These files 
consist of a method-specific part and a generic part.  We begin with an example of the generic 
part and describe the contents. 

Apparent false positive rates and cutoffs 
at .70 and .85 true positive rates 
          Cutoff  TPR  FPR  
  HIGH 0.8075281 0.70 0.02 
MEDIUM 0.6026849 0.85 0.09 

The output begins with apparent false positive rates, which are based on predictions from the full 
data set.  Here is how to interpret the output.  For this prediction (bagging in this example), if we 
use a cutoff of .8075 and declare locations with predictions greater than the cutoff to be sites, 
then we capture 70% of the sites (true positive rate of 70%) but only 2% of the random points 
(false positive rate of 2%).  Similarly, if we choose a cutoff of .6027, then we capture 85% of the 
sites and 9% of the random points. 

The apparent error rates are too optimistic, so we also compute error rates using cross-validation. 
Our 10-fold cross-validation fits the model using 90% of the data and then uses that model to 
predict the 10% of the data held out.  We cycle through 10 different subsets of hold out data until 
all locations were predicted using models fit excluding the points of interest.  Cross-validated 
results are summarized next. 

Cross-validated true and false positive rates and 
cutoffs at nominal .70 and .85 true positive rates 

, , HIGH  
            Cutoff  TPR  FPR 
       1 0.8096584 0.660 0.040 
       2 0.7989974 0.710 0.030 
       3 0.8027825 0.680 0.020 
       4 0.8059832 0.710 0.040  
       5 0.8101571 0.690 0.030 
       6 0.8073968 0.690 0.050 
       7 0.8142347 0.660 0.040 
       8 0.8082299 0.720 0.030 
       9 0.8160169 0.670 0.040 
      10 0.8104025 0.670 0.030 
 Average 0.8083859 0.686 0.035 
Combined 0.7833581 0.700 0.040 

, , MEDIUM 
            Cutoff  TPR  FPR 
       1 0.6041536 0.770 0.120 
       2 0.6076615 0.830 0.120 
       3 0.5999492 0.830 0.110 
       4 0.5936856 0.850 0.140 
       5 0.6077833 0.830 0.120 
       6 0.5994719 0.820 0.140 
       7 0.5954879 0.800 0.150 
       8 0.5961668 0.840 0.110 
       9 0.6019120 0.820 0.190 
      10 0.6043290 0.800 0.120 
 Average 0.6010601 0.819 0.132 
Combined 0.5484972 0.850 0.170 
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Begin with the “High” results, which are supposed to capture 70% of the sites, and consider 
group 1.  We fit a model to 90% of the data and find the cutoff that gives us 70% true positive 
rate in the data used to fit the model.  The cutoff is .8097.  We now apply this model and cutoff 
to the 10% of the data held back.  When we do this, we find that we actually obtain a 66% true 
positive rate (instead of the nominal 70%) and a 4% false positive rate.  Similarly, when we hold 
back group 10, we select a cutoff of .8104 and obtain a TPR of 67% and a FPR of 3%.  
Averaging across the 10 groups (the line labeled “Average”), the cutoff is .8083, the TPR is 
69%, and the FPR is 3.5%.  The average cutoff of .8083 is pretty close to the apparent cutoff 
from above (.8075), so that is reassuring, but the TPR that we actually attain is below the 70% 
that we wanted.  To get 70% TPR, we must reduce the cutoff to .7834 (the line labeled 
“Combined”), which gives us a FPR of 4%.  Thus the apparent cutoffs are too optimistic, and we 
really should use a lower cutoff to attain 70% TPR when predicting to new data.  (Most site 
models show differences between apparent and cross-validated results much greater than this 
example survey model.) 

The “Medium” results tell a similar story.  They should have a TPR of 85%, but when cross-
validated, the TPR only averages about 82%.  We need to lower the threshold to .5485 to capture 
85% of the sites when predicting to new data. 

Results from spatial cross-validation are even more pessimistic, but that is because they simulate 
a much more challenging modeling situation.  In cross-validation, we predict using models fit 
without benefit of the data we are trying to predict.  However, since the 10 subsets are chosen 
randomly, there is a good chance that landscapes similar to where we are trying to predict are 
included in the modeling subset.  In spatial cross-validation, we exclude data in small spatial 
clusters rather than one point at a time.  Spatial cross-validation simulates predicting into 
landscapes where we've never had any data before!  We have to expect that our predictions will 
work more poorly, and, unfortunately, our expectations are met. 

Spatial cross-validation results are reported just like the cross-validation results.  For example, 
when trying to capture 85% of the sites, our average threshold is .606 and we achieve an average 
TPR of 52% with a FPR of 12%.  To get our desired TPR of 85%, we must lower the threshold 
to .356, which gives us a FPR of 38%.  These results should be compared with .548 and FPR of 
17% for simple cross-validation.  

Spatial cross-validated true and false positive rates and 
cutoffs at nominal .70 and .85 true positive rates 

, , HIGH 
            Cutoff  TPR  FPR 
       1 0.8002406 0.560 0.020 
       2 0.8380684 0.050 0.000 
       3 0.8259919 0.350 0.020 
       4 0.8474061 0.060 0.030 
       5 0.8163326 0.080 0.010 
       6 0.8298684 0.020 0.000 
       7 0.7338127 0.380 0.090 
       8 0.8054010 0.210 0.020 
       9 0.7975499 0.370 0.030 
      10 0.8104839 0.390 0.040 
 Average 0.8105155 0.247 0.026 
Combined 0.4460000 0.700 0.250 

, , MEDIUM 
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            Cutoff  TPR  FPR 
       1 0.6085676 0.750 0.090 
       2 0.6184312 0.290 0.070 
       3 0.6082854 0.590 0.080 
       4 0.6292347 0.260 0.110 
       5 0.6230563 0.430 0.140 
       6 0.6030965 0.440 0.120 
       7 0.5632239 0.490 0.190 
       8 0.6111954 0.720 0.150 
       9 0.5863917 0.730 0.100 
      10 0.6082661 0.460 0.110 
 Average 0.6059749 0.516 0.116 
Combined 0.3556858 0.850 0.380 

We recommend using the “combined” cross-validated cutoffs to do classification.  If you know 
that you are predicting into a landscape unlike the rest of your data set, you could consider the 
more pessimistic spatially cross-validated threshold. 

The output file also contains method-specific information for how to implement the prediction 
routine.  Calling this part of the output “arcane” would be too generous.  Details of how to 
interpret and use the method-specific output can be found in the “User's Guide for Mn/Model 
Phase 4 S-Plus Software.” 
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6. Conclusion 

Phase 4 of Mn/Model provides the opportunity to improve both the archaeological data bases and 
statistical prediction methods that were used in Phase 3.  Among the methods considered here, 
bagging (bagged trees), double bagging (bagged trees twice), and boosting consistently 
outperformed the alternatives.   Boosting does not have a native implementation in S-Plus, and it 
would appear fairly challenging to port the implementation from R to S-Plus.  For this reason, we 
do not recommend boosting.  Double bagging generally outperformed bagging, although 
typically not by a large amount.  However, double bagging does best with two passes each with a 
fairly large number of trees, so double bagging will, in general, require doubling the already 
considerable effort needed to implement bagging in GIS. For this reason, we cannot 
wholeheartedly recommend double bagging. 

The best compromise between accuracy and efficiency is bagging, using a single pass with 
roughly 10 total trees (11 is the default in the S-Plus software supplied with this project).  As was 
shown in Chapter 4, bagging provides a 15% to 50% improvement in false positive rate over the 
method used in Phase 3 (logistic regression with BIC selection) depending on data set and true 
positive rate.  Software to implement bagging has been provided as part of this project and is 
documented in “User’s Guide for Mn/Model Phase 4 S-Plus Software.” 
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