

Statistical Methods
for Mn/Model Phase 4

Final Report

Prepared by:

Gary W. Oehlert, Ph.D.
Brian Shea

School of Statistics
University of Minnesota

313 Ford Hall
224 Church St. SE

Minneapolis, MN 55455

August 2007

Published by:

Research Services Section
Minnesota Department of Teransportation

Transportation Building, MS 330
395 John Ireland Boulevard

St. Paul, MN 55155

This report represents the results of research conducted by the authors and does not necessarily
represent the views or policies of the Minnesota Department of Transportation or the Center for
Transportation Studies. This report does not contain a standard or specified technique.

Acknowledgments
We would like to thank Dr. Elizabeth Hobbs at Mn/DOT for providing data, feedback, and the
opportunity to work on this project. She was also able to keep us grounded in reality regarding
what could and could not be implemented in GIS.

Table of Contents
1. Introduction 1
2. Model Evaluation 3
3. Classification Methods 15
4. Comparison and Recommendations 25
5. Example 28
6. Conclusion 42
7. References 43

List of Tables

2.1 Two competing classification rules. 3
2.2 An example where the sensitivity is the same for both rules. 6
4.1 Number of sites and random locations by data set. 25
4.2 Cross-validated false positive rates for 70% true positive rate. 26
4.3 Cross-validated false positive rates for 85% true positive rate. 26
4.4 Cross-validated areas under the ROC curve. 26
4.5 Cross-validated false positive rates for double bagging. 27

List of Figures

2.1 An ROC curve. 5
2.2 Intersecting ROC curves. 6
2.3 Negative predictive gain. 9
2.4 Positive predictive gain. 9
2.5 Sample gain plot. 10
2.6 Schematic of cross-validation. 11
3.1 A simple regression tree. 19
5.1 Elevation histograms for sites, negative surveys, and random locations. 31
5.2 Cumulative apparent predicted plot. 34
5.3 Cumulative predicted curves separately for each cross-validation subset. 34
5.4 ROC curve for cross-validated predictions. 36
5.5 ROC curves separately for each cross-validation subset. 37
5.6 Gain curves. 38

Executive Summary

Mn/Model is a project that combines landscape and archaeological databases in a Geographic
Information System (GIS) with statistical prediction methods to provide an estimate of the risk
that a given location contains archaeological artifacts. Planners use these estimates both to seek
out areas of low risk and to accommodate areas of high risk when planning transportation
projects. Obviously, more accurate risk estimates lead to improved planning and reduced costs.

Mn/Model is about to move into its fourth phase, which will include improved landscape and
archaeological data. At this time, Mn/DOT wishes to reconsider the statistical prediction
methods used in Phase 3 to determine if better alternatives are available.

This project proposed and compared eight prediction methods, the Phase 3 method and seven
alternatives. The methods were logistic regression with BIC model selection (the Phase 3
approach), logistic regression with Bayesian model averaging, naïve Bayes classification, tree-
structured regression, “bumped” trees, “bagged” trees, “double bagged” trees, and “boosted”
trees. Bumping, bagging, and boosting are examples of “perturb and aggregate methods,” which
repeatedly modify the data in minor ways and then combine the predictions from the modified
data sets. Overall, bagging, double bagging, and boosting had the best predictive ability.

We recommend that bagged trees, or bagging, be the default prediction method for Phase 4.
Bagging is easier to do in S-Plus (the statistical software used) than boosting and easier to
implement in the GIS framework. Bagging provides substantial improvement in predictive
capability over the Phase 3 method. Tree-structured models are also fairly easy to explain to the
general public. Double bagging provides a small improvement over bagging, but at the cost of
substantially more effort in implementation.

1. Introduction

Mn/Model is a predictive model for precontact archaeological site location in Minnesota (Hudak
et al. 2002). Its goal is to use landscape variables such as proximity to water, elevation, aspect,
and soil type to classify the landscape into those locations where archaeological sites are more
likely and those where they are less likely. The motivation for Mn/Model was, and is, that the
Minnesota Department of Transportation (Mn/DOT) is required by Section 106 of the National
Historic Preservation Act of 1966, as amended, to make a good faith effort to identify historic
properties within any project area and assess the impact of the project on those cultural
resources. This assessment must be done before the project can proceed. Accurate prediction of
the location of cultural artifacts, or at least of landscapes where those artifacts are more likely to
be found, thus speeds the process and provides potential cost savings.

The Mn/Model project began in 1995 and moved through Phase 3 in 1999. It was funded by
Mn/DOT using federal money available through the Intermodal Surface Transportation
Efficiency Act. The scope of Mn/Model is geographically state-wide in Minnesota and
temporally pre-1837 for cultural resources. Mn/Model provides a set of digital maps providing
an assessments of both how likely a location is to have historic properties and how likely similar
locations are to have been surveyed. These two bits of information help guide planners as to
where surveys for cultural artifacts should be concentrated.

Functionally, Mn/Model has landscape and cultural resource data stored as GIS layers, and
predictive models are constructed for sub-regions of the state (for example, the Big Woods or the
Anoka Sand Plain). The landscape variables in GIS are primarily those that are not generally
influenced by humans (for example, soil type, elevation, distance to water). In some cases, there
are variables that have changed since European settlement (for example, forest cover type), but
data are available for the pre-European settlement era. Because archaeological sites are rare in
Minnesota, we compare landscape variables at known sites with landscape variables at random
locations, the assumption being that nearly all random locations do not contain archaeological
artifacts.

The Mn/Model project builds the regional maps in a sequence of steps:
1. Construct a separate data set for each region. This data set includes the geographic

location, site type, and all potential predictor variables. The locations that go into this
data set are all locations with known cultural resources, all locations that are known to
have been surveyed for cultural resources, and a set of randomly chosen locations from
within the region.

2. Export this data set from ArcGIS (ESRI, Inc.) and import it into S-Plus statistical
software (Insightful Corp.).

3. Fit a predictive model using these data within S-Plus.
4. Implement in ArcGIS the predictive model determined in S-Plus, producing digital maps

for the entire region.

Mn/Model is now entering Phase 4. This phase will bring in additional predictive variables,
clean up or provide more accurate versions of current predictive variables, use a spatially
corrected database of archaeological sites, and make use of these new data collected since Phase

1

3 to produce new predictive models. Rather than simply use the prediction schemes previously
used in Phase 3, Phase 4 will evaluate other prediction methods for building the predictive maps.

The “Statistics for Mn/Model” project being reported here is the branch of the Phase 4 effort that
seeks to evaluate alternate statistical methods for archaeological predictive models. Our
principal objectives are:

Objective 1. Find the best prediction method for Mn/Model Phase 4 that can be implemented
reasonably within GIS.

Objective 2. Produce S-Plus software (and accompanying documentation) to implement this
prediction method in the context of Mn/Model Phase 4.

Secondary objectives for this project include:

Objective 3. Provide Mn/Model professionals with guidance on ways to compare and evaluate
prediction methods.

Objective 4. Train Mn/DOT professionals on the new prediction method.

This report address objectives 1 and 3. A separate document, the “User's Guide for Mn/Model
Phase 4 S-Plus Software," addresses objective 2. Training will be done in person.

Chapter 2 of this report discusses methods and guidance for comparing prediction methods in the
Mn/Model context. These methods include the use of cross-validation for true and false positive
rates, as well as graphical methods such as predictive distributions, ROC curves, and “gain”
curves.

Chapter 3 discusses potential prediction methods. This project proposed and compared eight
prediction methods: logistic regression with BIC model selection (the Phase 3 method), logistic
regression with Bayesian model averaging, naive Bayes classification, tree-structured regression,
“bumped” trees, “bagged” trees, “double bagged” trees, and “boosted” trees. Bumping, bagging,
and boosting are examples of “perturb and aggregate methods,” which repeatedly modify the
data in minor ways and then combine the predictions from the modified data sets.

Chapter 4 compares the prediction methods on sample Mn/Model data and concludes that
bagged trees (bagging) should be the prediction method for Phase 4. Overall, bagging and
boosting had the best predictive ability, and bagging is easier to implement in GIS as well as
being easier to explain to the public.

Chapter 5 runs through an example with the S-Plus software and explains the output.

Chapter 6 gives conclusions.

2

2. Model Evaluation

This chapter presents methods of evaluating possible classifiers for use in Mn/Model. It is
broken into two sections:

1. Comparing Classifiers, and
2. Cross-Validation.

The sections correspond to two basic questions: what are the properties or characteristics that tell
us which classifiers are better, and what is an honest estimate of those properties? Most of the
language and ideas of this chapter were originally developed in the context of medical diagnostic
tests (Pepe 2003), but they are applicable to any two-category classification problem.

2.1 Comparing Classifiers

This section presents methods of comparing possible two-category classification tools. For
example, we would like to predict whether or not a portion of landscape contains an
archaeological site. Let’s say that we have two competing methods of prediction (rules). Every
location is either a site or a non-site, and each rule classifies every location as either a site or a
non-site. Thus we can form a 2 by 2 table listing the fractions of locations that fall into the four
possibilities for how the rule classified them and their actual site/non-site status, as in Table 2.1.

Rule 1 Rule 2
Truth Site Non-Site Total Truth
Site 0.08 0.02 0.10 Site
Non-Site 0.30 0.60 0.90 Non-Site
Total 0.38 0.62 1.00 Total

Site Non-Site Total
0.06 0.04 0.10
0.20 0.70 0.90
0.26 0.74 1.00

Table 2.1. Two competing classification rules. Rows denote true classes,
columns denote classes as determined by the rules.

The true positive rate (TPR), or sensitivity, of the method is the fraction of sites that are correctly
predicted to be sites. In probability terms, the sensitivity is the probability that the rule classifies
a location as a site, given that the location actually is a site.

Sensitivity1 = Pr(Rule 1 = Site | Truth = Site) = 0.08 / 0.10 = 0.80

Sensitivity2 = Pr(Rule 2 = Site | Truth = Site) = 0.06 / 0.10 = 0.60

In our example, Rule 1 correctly labels 80% of the true sites while Rule 2 correctly labels only
60% of the true sites. That is, Rule 1 is more sensitive to the presence of an archaeological site.

The specificity of the method is the fraction of non-sites that are correctly classified. In
probability terms, specificity is the probability that the rule classifies a location as a non-site,
given that the location actually is a non-site.

Specificity1 = Pr(Rule 1 = Non-Site | Truth = Non-Site) = 0.60 / 0.90 ≈ 0.67

3

Specificity2 = Pr(Rule 2 = Non-Site | Truth = Non-Site) = 0.70 / 0.90 ≈ 0.78

In our example, Rule 1 correctly labels about 67% of non-sites while Rule 2 correctly labels
about 78%. That is, Rule 2 is more specific about what locations it labels as sites. A related
measurement is the false positive rate (FPR): the fraction of non-sites that are incorrectly
categorized as sites. In fact,

false positive rate = 1 − specificity.

A rule that is more specific about what it labels as a site will have fewer false positives.

Ideally, both the sensitivity and the specificity of a method are high. If Rule 1 were both more
sensitive and more specific than Rule 2, we would clearly prefer Rule 1. However, when one of
the predictors is more sensitive and the other is more specific, we have to decide which errors are
more costly before we can choose between the rules. For example, if the costs associated with
happening upon an archaeological site at a location that was predicted as a non-site are much
greater than the costs of unnecessarily surveying a location or unnecessarily avoiding portions of
the landscape (avoiding predicted sites that were actually non-sites), then we will prefer the more
sensitive method.

Some predictive methods have a “tuning parameter” that adjusts their sensitivity and specificity.
For example, in the case of logistic regression, portions of landscape are ordered according to
their estimated likelihood of containing a site. Choosing a point in this continuum as a threshold
creates prediction categories: locations above the threshold are labeled sites, the rest are labeled
non-sites. Changing the threshold changes the sensitivity and specificity, and examining the
sensitivity and specificity provides guidance in choosing the threshold.

Unless we are able to perfectly predict whether a location is a site, there is a necessary trade
between sensitivity and specificity when choosing a threshold. The extremes are illustrative. An
extremely low threshold (negative infinity, say) would have sensitivity 1, because every site is
correctly labeled a site, but this is because every location in the state would be labeled a site.
Thus, the sensitivity is 1, but the specificity is 0. A rule based on this threshold would be entirely
too sensitive; everything sets it off. Conversely, an extremely high threshold (positive infinity)
would have specificity 1 because it correctly labels every non-site a non-site, but it also labels
every site a non-site (sensitivity 0). Such a rule is far too specific about what it is willing to label
a site.

The trade-off between sensitivity and specificity in assigning a threshold is illustrated by the
Receiver Operating Characteristic (ROC) curve. An ROC curve plots the true positive rate
(sensitivity) against the false positive rate (1-specificity) as the threshold value varies. Figure 2.1
is a typical ROC curve. The curve passes through the points (0,0) and (1,1). These points
correspond to the extreme cases where no location is labeled a site and where every location is
labeled a site. The diagonal line connecting these points corresponds to randomly guessing
whether a portion of landscape contains an archaeological site; you get the point (p,p) on the line
by randomly assigning a fraction p of the locations to be sites. An ROC curve above the diagonal
implies that the rule (prediction model) does better than randomly guessing.

4

Figure 2.1: An ROC curve plots the true positive rate (TPR) against the false
positive rate (FPR) as the threshold level varies.

We may compare two models (Model 1 and Model 2) by comparing their ROC curves. If the
ROC curve of Model 1 is uniformly greater than or equal to the ROC curve of Model 2, then
Model 1 is more sensitive than Model 2 at every specificity. (It is also more specific at every
sensitivity level.) In that case, Model 1 would clearly be preferable to Model 2.

It may happen that ROC curves intersect, as is shown in Figure 2.2. In that case, one rule is
preferable when high specificity is needed, and the other rule is preferable when high sensitivity
is needed. For example, suppose that the costs associated with happening upon an archaeological
site in a location predicted to be a non-site are much greater than the costs of unnecessarily
avoiding portions of the landscape. Then we may fix the sensitivity at a high enough level to
control against the costs of falsely labeling sites as non-sites. Once the sensitivity has been fixed,
we choose the rule with the best specificity. In the example shown in Figure 2.2, if we require
our rule to capture at least 80% of the true sites, then Model 1 is preferably, because it has a
higher specificity (lower false positive rate) whenever sensitivity is at least 80%. If we only
require 50% of the true sites to be labeled as sites, then the preferable model is Model 2. In this
case, our choice of model depends on the percent of true sites that we are willing to mislabel.
Thus, in addition to deciding what error is more important to guard against, we generally need to
determine the rate at which we are willing to incur that error.

5

Figure 2.2: An example where the ROC curves for Model 1 (black) and Model 2
(gray) intersect.

Fixing sensitivity, increased specificity corresponds to a smaller fraction of landscape labeled as
sites. For example, the two rules in Table 2.2 have the same sensitivity, but Rule 2 is more
specific about what locations it labels sites. To capture 70% of the actual sites, Rule 1 has to
label 37% of the landscape as sites. To capture the same percentage of actual sites, Rule 2 labels
only 27% of the landscape as sites.

Rule 1 Rule 2
Truth Site Non-Site Total Truth
Site 0.07 0.03 0.10 Site
Non-Site 0.30 0.60 0.90 Non-Site
Total 0.37 0.63 1.00 Total

Site Non-Site Total
0.07 0.03 0.10
0.20 0.70 0.90
0.27 0.73 1.00

Table 2.2: An example where sensitivity is the same for both rules. The higher
specificity of Rule 2 (0.78 versus 0.67) results in a smaller fraction of the
landscape labeled a site (27% versus 37%).

Sensitivity and specificity tell us about a classification rule’s performance for sites and non-sites
respectively. When the rule is actually put into practice, the truth is unknown, and all we have is
the prediction made by our classification rule. Thus, we would like to know how likely we are to
encounter a site when the classification rule says that a site will be present, and also when the
rule says that a site will not be present.

The positive predictive value (PPV) is the fraction of locations that our rule classifies as sites that
actually contain sites. In probability terms, PPV is the probability that a location is a site, given
that the rule classifies the location as a site:

6

Positive Predictive Value = Pr(Truth = Site | Label = Site).

The negative predictive value (NPV) is the fraction of locations that our rule classifies as non-
sites that actually are non-sites. In probability terms, NPV is the probability that a location is a
non-site, given that the rule classifies the location as a non-site:

Negative Predictive Value = Pr(Truth = Non-Site | Label = Non-Site).

We define a new term, the Unexpected Discovery Rate (UDR), to be the probability of a location
being a site, given that the prediction rule classified the location as a non-site:

UDR = Pr(Truth = Site | Label = Non-Site) = 1 − NPV.

The UDR is the “Oops rate,” the fraction of times that we find an archaeological site where we
don’t expect it.

The PPV, NPV, and UDR depend not only on the sensitivity and specificity but also on the
prevalence, which is the fraction of the landscape that contains sites. In probability terms, the
prevalence is the probability that a location is a site:

Prevalence = Pr(Truth = Site).

One way to think of the prevalence is as the chances of finding a site by choosing a random
location. Prevalence is also called the a priori probability of a site.

We would like to compare the PPV and NPV to the prevalence to see how much better we do
using our prediction rule instead of simply guessing. We define the positive predictive gain
(PPG) as the ratio

PPG = Positive Predictive Value / Prevalence
 = Pr(Truth=Site | Label=Site) / Pr(Truth=Site) .

The positive predictive gain tells us how many times better the model is at discovering sites than
a random survey would be. For example, in Table 2.2, the probability that a random location
contains an archaeological site is 0.10. Under Rule 1, the probability that a location labeled a site
is in fact a site is about 0.19,

PPV1 = Pr(Truth = Site | Rule 1 = Site) = 0.07 / 0.37 ≈ 0.19 .

Thus we find

PPG1 = 0.19 / 0.10 = 1.9,

meaning that locations labeled sites using Rule 1 are about 1.9 times as likely to be sites as a
randomly chosen location. Under Rule 2, the PPV is about 0.26,

7

PPV2 = Pr(Truth = Site|Rule 2 = Site) = 0.07 / 0.27 ≈ 0.26

making the PPG about 2.6,

PPG2 = 0.26 / 0.10 = 2.6 .

A location labeled a site with Rule 2 is 2.6 times as likely as a random location to be an
archaeological site.

We also want to compare a rule’s ability to avoid sites to the background probability of a site.
We define the Negative Predictive Gain (NPG) as the ratio

NPG = UDR / Prevalence = Pr(Truth=Site | Label=Non-Site) / Pr(Truth=Site) .

The negative predictive gain tells us how much less likely we are to discover a site at a location
labeled a non-site using the model than if we were surveying randomly. Returning again to Table
2.2, Rule 1 has an unexpected discovery rate of about 0.05,

UDR1 = Pr(Truth = Site | Rule 1 = Non-Site) = 0.03 / 0.63 ≈ 0.05,

which is one half the chances of finding a site at random:

NPG1 = Unexpected Discovery Rate / Prevalence ≈ 0.05 / 0.10 = 0.50.

Since Rule 2 has an unexpected discovery rate of about

UDR2 = Pr(Truth = Site | Rule 2 = Non-Site) = 0.03 / 0.73 ≈ 0.04,

its negative predictive gain is about

NPG2 = Unexpected Discovery Rate / Prevalence ≈ 0.04 / 0.10 = 0.40.

That is, the chances of unintentionally discovering an archaeological site using Rule 2 are about
40% of what they would be surveying at random.

A good predictive rule will have a large PPG and a small NPG.

Given a prevalence, we can compute the positive predictive gain and the negative predictive gain
for every point on an ROC curve. Each different point (rule) on the ROC curve can be identified
by its true positive rate (vertical coordinate) or by its false positive rate (horizontal coordinate).
We can thus examine positive (or negative) predictive gain by plotting it against either the TPR
or the FPR; in fact, it is sometimes useful to do both.

8

Figure 2.3: Comparison of the negative predictive gain with the false positive rate
(solid line) and true positive rate (dashed line).

Figure 2.4: Comparison of the positive predictive gain with the false positive rate
(solid line) and true positive rate (dashed line).

Figure 2.3 plots the negative predictive gain against both the true and false positive rates; we
have assumed the ROC curve of Figure 2.1 and 10% prevalence. The dashed red line plots the
NPG against the true positive rate (top axis). For example, a classification rule that correctly
labels 70% of the archaeological sites reduces our chances of unexpected discovery to about 40%

9

of what it would be with random survey (a reduction of 60%). The solid red line plots the NPG
against the false positive rate (bottom axis). Continuing the example, the same rule that reduces
our chances of accidental discovery by around 60% has a false positive rate of about 20% (it
mislabels about 20% of the non-site landscape as a site).

Figure 2.4 compares the positive predictive gain to the true and false positive rates; we again
assume the ROC curve of Figure 2.1 and 10% prevalence. The dashed blue line plots the positive
predictive gain against the true positive rate (top axis). The classification rule that correctly
labels 70% of the archaeological sites is also about 2.7 times as efficient identifying sites as a
random guess would be. The solid blue line plots the positive predictive gain against the false
positive rate (bottom axis). Continuing the example, the same rule that gives a 2.7 times gain in
efficiency also mislabels about 20% of the non-site landscape as a site.

Line Comparison

Dashed blue PPG vs. TPR
Solid blue PPG vs. FPR
Dashed red NPG vs. TPR
Solid red NPG vs. FPR

Figure 2.5. Sample gain plot, showing both positive (blue) and negative (red)
predictive gains against the true positive rate (dashed) and the false positive rate
(solid).

Gain curves like Figure 2.5 combine the plots in Figures 2.3 and 2.4 into a single graphic. This
plot uses a single horizontal axis, but interprets it as FPR for solid lines and TPR for dashed
lines. The vertical axis is the gain (either positive or negative).

2.2 Cross-Validation

The goal of our analysis is not to classify the observed locations—we know whether they are
sites. Instead, we want to predict where archaeological sites remain uncovered. We create a
classification rule based on the sample we have observed and use the information in that sample
to predict whether a new location is a site.

10

Our prediction rules are developed with our data and for our data. This means that they likely
work better with this data set than any other. In particular, the sensitivity and specificity we get
by simply applying our rules to our data give us an overly optimistic picture of how well the
rules will work when applied on new data. Cross-validation directly estimates the prediction
error of the classifier on new data; this is called the out-of-sample prediction error of a classifier.
Chapters 2 and 8 of Mosteller and Tukey (1977) provide a gentle introduction to the motivation
and use of cross-validation.

2.2.1 Standard Cross-Validation

Every real prediction is about a location that was not used in development of the prediction rule.
Nonetheless, we need to estimate how well our rules will work on these future locations based on
what we know from our current data. Cross-validation simulates this “new location” prediction
by setting some of the sample aside to see how well we are able to predict using the remainder of
the sample.

Run 1
Predict
Fit
Fit
…
Fit

… Run 2
 Fit
 Predict
 Fit

…
Fit

Subset 1
Run 3

 Fit
 Fit
 Predict

…
Fit

…
Run 10
Fit
Fit
Fit
…
Predict

Subset 2 …
Subset 3 …
… …
Subset 10 …

CV Predicted
From run 1
From run 2
From run 3
…
From run 10

Figure 2.6: Schematic of subset use and origin of predicted values in a ten-fold
cross-validation.

Figure 2.6 illustrates the case of a ten-fold cross-validation. A model is specified up to a set of
parameters to be estimated. The data are randomly divided into ten subsets, and we will
eventually produce predictions for data in all of the sub sets. To predict for subset 1, we fit the
model using subsets 2 through 10 (Run 1). Then we use this model, which was fit without subset
1, to predict subset 1. These predicted values are then carried over to be the cross-validation
predicted values for subset 1. To predict subset 2, we fit the model using subsets 1 and 3 through
10 (Run 2), and so on. We leave out each subset once until an out-of-sample prediction has been
made for every observation.

Phase 3 of Mn/Model essentially used two-fold cross-validation to evaluate models. For Phase
4, we propose to evaluate the true and false positive rates of our prediction rules using ten-fold
cross-validation. We will divide the data into 10 groups at random and do 10 runs, leaving out
and predicting one of the groups in each run. The out-of-sample predictions and the truth can be
used to estimate the prediction error of the classifier. We call these cross-validated estimates.

Any of the measures outlined in Section 2.1 can be applied to the out-of-sample predictions.
Sensitivity, specificity, ROC curves, and gain plots can all be calculated and in general should be
calculated. On their own, they provide estimates of the classifier’s abilities as a prediction tool.
When compared with the analogous measures based on the full sample, they indicate the

11

sensitivity of the estimation procedure to the data observed.

2.2.2 Spatial Cross-Validation

One potential problem with ordinary cross-validation is that it treats every location in the sample
as independent and exchangeable. That is, it assumes that leaving any subset of 10% out is as
good as any other. However, we have spatial data, and the first law of geography states that
everything is related, but nearby things are more related. This would imply that 10% of the data
in a spatial cluster may behave differently than 10% randomly scattered.

To assess the effect of this spatial correlation, we also try a spatial cross-validation. Standard
cross-validation sets aside observations randomly to be predicted by those remaining; spatial
cross-validation groups data into spatial clusters and then sets aside spatial clusters to be
predicted by those remaining. That is, spatial cross-validation estimates the out-of-spatial-cluster
prediction error of a classifier.

This is, in general, a much more challenging prediction problem, because we have guaranteed
that there will be no nearby (and thus presumably similar) locations in our training data. Spatial
cross-validation simulates prediction into an area “unlike” those we have seen before.

In some situations, Mn/Model is used to make predictions into landscapes that have not been
surveyed before but are similar to landscapes that have been surveyed before. For those
situations, ordinary cross-validation is likely to give the better estimate of prediction accuracy.
In other situations, Mn/Model is predicting into landscapes unlike any that have ever been
surveyed. In those situations, spatial cross-validation is likely to give the better estimate of
prediction accuracy. Finally, spatial cross-validation can be useful in preventing over-optimism
about models in regions where there are low site numbers and only certain kinds of landscapes
(e.g. lakeshores) have been surveyed. Models in these situations will appear to be quite accurate
under cross-validation, but are likely quite poor under spatial cross-validation.

Implement ten-fold spatial cross-validation as follows:
1. Divide the data into K mutually exclusive and exhaustive spatial clusters of locations

(sites, surveyed locations, and random locations). By default, we choose K to be 400.
2. Randomly choose 10% of the regional clusters of locations to hold out; predict the

locations in those clusters based on a model fitted to the other 90% of the regional
clusters.

3. Repeat step 2 nine times until all spatial clusters have been held out and predicted once.
4. Use the spatially cross-validated predictions to compute criteria such as sensitivity,

specificity, and so on.

Several questions arise when determining how to construct spatial clusters: Should clusters have
an equal number of locations (data points)? Should clusters cover similar areas? If a location is
off by itself, should we force it into a cluster with other locations? How many clusters are
appropriate? How can we automate this process?

We make the following proposal for automated construction of spatial clusters:

12

1. Clustering will be based on the UTM easting and northing coordinates of each raster cell
in the sample.

2. Clustering will be done via the k-means procedure to produce a vector with elements 1
through 400 specifying the cluster memberships.

3. Ten-fold spatial cross-validation will be done by holding back randomly chosen sets of
10 clusters, until all clusters have been predicted.

Spatial cross-validation necessarily involves a choice on the part of the investigator in defining
the spatial clusters. In particular, the above suggestion of 400 clusters is arbitrary. The behavior
of spatially cross-validated estimates is highly dependent on the number of spatial clusters
defined. On one extreme, the investigator may define as many clusters as there are locations,
which is simply standard cross-validation. On the other extreme, one could choose to predict the
western half of the locations using only the eastern half of locations. Somewhere between these
extremes is an appropriate level of clustering to capture the effect of predicting into portions of
landscape with which there is little or no experience.

The k-means procedure works as follows (Hartigan 1975). First we initialize K cluster centers
(K is 400 by default); these could be K random points in the region of interest. Then each data
location is assigned to the closest cluster center. Then the cluster center centers are moved to
positions that minimize a measure of the total distance from all locations to the cluster centers.
Then the locations are reassigned to centers, the centers are updated, and this is repeated until no
further improvements are possible. If all the locations were uniformly spread over the area of
interest, the resulting clusters would be approximately equal in number of locations and area.
However, in areas of high density of locations, the clusters will tend to have more locations and
smaller areas.

This method to construct spatial clusters is simple to implement and not completely unrealistic,
but it may be possible to improve it substantially by instead using expert knowledge to derive the
clusters. For example, travel time by foot or by canoe, size of archaeological sites, foraging
distances, change of elevation, and other factors may provide better clusters. However, that
expert opinion cannot (easily) be automated.

We recommend spatial cross-validation be used as a means of feeling out the possible
consequences of extrapolation into portions of landscape where little is known about the
presence or absence of sites.

2.3 Summary

Because the costs associated with accidentally discovering an archaeological site are considered
large compared to the costs of avoiding some locations unnecessarily, we recommend fixing a
minimum sensitivity, as was done in Mn/Model Phase 3. Among the prediction rules attaining
that sensitivity level, choose the rule that is most specific. Here we recommend choosing rules
that maximize specificity for 85% sensitivity.

Because sensitivity and specificity based on cross-validation directly estimate the predictive

13

performance of the rule, we recommend that models be compared based on their cross-validated
sensitivity and specificity. Similarly, thresholds for classifying locations should come from
cross-validation. Note, however, that the actual implemented model should be estimated on all of
the data.

14

3. Classification Methods

This chapter presents several methods to classify locations as having sites or not. The methods
fall into three distinct groups: those based on logistic regression, those based on tree-structured
regression, and those based on Bayes’ rule. There are four sections, three describing the three
groups of methods, and a fourth comparing the advantages and disadvantages of the methods.
Hastie et al. (2001) is a good general reference for the methods described in this chapter, but it
assumes the reader has some comfort with statistical methodology.

3.1 Logistic Regression Methods

Logistic regression methods are based on the assumption that all responses are either 1 (a site) or
0 (a non-site). The probability that a particular location is a site is p(x), where x represents a set
of predictor variables such as elevation, aspect, distance to water, and so on. Similarly, the
probability that a location is not a site is 1-p(x). If we have k different predictors, we represent
these as x1, x2, ..., xk. Since each different location could have different values for the
predictors, locations can differ in their probabilities of being sites.

Logistic regression assumes that the relationship between the predictors x and the probability
p(x) takes a particular form. The logit transform of the probability p(x) is ln[p(x)/(1-p(x))]; in
this expression, ln() indicates the natural logarithm. Logistic regression assumes that the logit of
p(x) is a linear combination of the predictor variables:

ln[p(x)/(1-p(x))] = L(x) = a0 + a1 x1 + a2 x2 + ... + ak xk

Here x1, x2, ..., xk are the known predictor values for the location, and a0, a1, ..., ak are unknown
coefficients that we will need to estimate. We can call L(x) the logit of the probability or the
linear predictor (the sum of products on the right is called a linear combination, hence linear
predictor).

Logistic regression takes a set of locations, each with its own 0/1 response and its own set of k
predictor values and estimates the values of a0 through ak. Then, for a new location with a new
set of predictors, we can compute the linear predictor L(x) based on the coefficients we estimated
from the training data. We can compute the probability of the location being a site from the
linear predictor via

p(x) = exp(L(x))/[1 + exp(L(x))] .

Classification is done by picking a threshold and declaring locations with p(x) greater than the
threshold to be sites.

3.1.1 Variable selection

One of the issues with using logistic regression is deciding which set of predictors to use. If we
leave out an important predictor, then our estimates of the logit will be biased. If we use extra,
unneeded predictors, then our estimates of the logit will have excess variability. Both bias and

15

excess variability are bad, so we want to reduce them. The trick is to find a set of predictors that
is large enough to include all the important variables without including unneeded variables. This
is the variable selection problem. Within a given data set, more predictor variables will always
fit the data better than fewer predictor variables, but using more predictor variables may make
the predictions worse when the procedure is applied to new data. We need to figure out what
will work best on new data while using only the data at hand.

Several different variable selection techniques have been proposed. In this project, we will use
the Bayesian Information Criterion, also known as BIC (Schwarz, 1973). BIC works by
combining a measure of discrepancy between the observed data and the model predictions with a
penalty based on the number of predictors and the amount of data. Using more predictors will
decrease the discrepancy, but it increases the penalty. What we do is find the subset of predictor
variables that minimizes the BIC.

Logistic regression with BIC model selection was the prediction method used in Mn/Model
Phase 3.

BIC has a theoretical property that makes its use attractive, although it is not obvious that this
property is really active in any actual data set. The property is this: if the “true” model is present
as a subset of the variables we are considering, then given enough data, BIC will always choose
the correct model. However, we're never sure that the true model is one of our possible models,
and we're never sure that we have enough data.

3.1.2 Model Averaging

There may be many models (subsets of variables) with approximately equal values of BIC, that
is, there may be many models that fit the data about equally well. In such a case, it is not
obvious that the model with the smallest BIC is really any better than a model with a slightly
larger BIC. It may be that different models have different virtues that can be exploited by
combining them.

Since some models are better than others, we want to acknowledge that when combining various
models. BIC can be used to approximate a posterior probability for each model; these posterior
probabilities tell us how likely each model is to be the “true” model. The model coefficients are
then averaged according to their approximate posterior probabilities: the best models contribute
the most to the averaged models. In general, averaged models yield more stable predictions than
single selected models.

3.2 Naive Bayes

A premise of the Mn/Model project is that sites and non-sites tend to be at locations with
different landscape features. Ultimately, we want to use those differences to predict whether a
location contains an archaeological site. Logistic regression yields predictions by estimating the
probability that a location is a site given some predictors. Another approach to estimating the
probability is to reverse it: estimate the distribution of predictors given that a location is or is not
a site. This reversal hinges on a property of conditional probability called Bayes rule.

16

Bayes rule is written abstractly based on the probability of two events, or conditions, called A
and B. To make things concrete, let event A occur when a specific location is a site, and let
event B occur when the predictors for the same specific location take a given set of values. We
will want an expression for the probability of A given B, that is, the probability that the location
is a site given that the location has a certain set of predictors.

The probability Pr(A and B) that both conditions A and B hold is equal to the probability that
one of those conditions holds, Pr(A), times the probability of the second condition given the
first, Pr(B | A),

Pr(A and B) = Pr(B | A) Pr(A) .

That is, the probability of A and B equals the probability of B given A times the probability of A.
Similarly, the probability of A and B equals the probability of A given B times the probability of
B:

Pr(A and B) = Pr(A | B) Pr(B) .

Since both of the products—Pr(B | A) Pr(A) and Pr(A | B) Pr(B)—are equal to the joint
probability, Pr(A and B), they are equal to one another

Pr(A | B) Pr(B) = Pr(B | A) Pr(A) .

Dividing through by Pr(B) gives Bayes rule:

Pr(A | B) = Pr(B | A) Pr(A) / Pr(B) .

Bayes rule says that we can express the conditional probability of A given B in terms of the
probability of A, the probability of B, and the reversed conditional probability—the probability
of B given A. For example, the probability that a location is an archaeological site given that it
has some specified landscape features can be rewritten as the probability that the location has the
features given that it is a site, scaled by the probabilities of having the features and being a site:

Pr(Site | Feat.) = Pr(Feat. | Site) Pr(Site) / Pr(Feat.) .

So, one way to approach estimating the probability of a site given some landscape features is by
estimating the three probabilities on the right hand side—Pr(Site), Pr(Feat.), and Pr(Feat. |
Site).

An alternative is to use the odds of being a site rather than the probability itself:

Pr(Site | Feat.) Pr(Feat. | Site)Pr(Site) Odds = =
Pr(Nonsite | Feat.) Pr(Feat. | Nonsite)Pr(Nonsite)

Naïve Bayes makes the simplifying assumption that the distributions of different landscape

17

features are independent of each other (given site or non-site). That is, for landscape features x1,
x2, …, xk, assume that

Pr(x1,x2,…,xk | Site) = Pr(x1 | Site) Pr(x2 | Site) … Pr(xk | Site)

and

Pr(x1,x2,…,xk | Non-site) = Pr(x1 | Non-site) Pr(x2 | Non-site) … Pr(xk | Non-site)

Then, the odds are
Pr(x1 | Site) Pr(x2 | Site) Pr(xk | Site) Pr(Site) Odds = ...

Pr(x1 | Nonsite) Pr(x2 | Nonsite) Pr(xk | Nonsite) Pr(Nonsite)

This method is “naive” because the simplifying independence assumption is almost surely
wrong. Nevertheless, the estimator often performs quite well (see Hand and Yu (2001) for
examples and possible explanations).

Estimating Pr(Site) is not really an issue. We either use a prior probability or the sample
proportion of sites. The tricky part is how to estimate the conditional probabilities Pr(x1 | Site)
and Pr(x1 | Non-Site). We do this using the data in the training sample.

We use a kernel density estimator to approximate the conditional probabilities Pr(x1| Site) and
Pr(x1 | Non-Site). A kernel density estimate is like a smoother version of a histogram. It has all
the flexibility of a histogram, but gives a finer estimate of the distribution.

Naïve Bayes can be related back to logistic regression. The logit of a probability is the log of the
odds. Logistic regression assumes that this logit is a constant plus a sum of terms of the form aixi
--- that is, each predictor enters as a linear function. If we take the log of the odds for the naïve
Bayes estimate, we get a constant plus a sum of terms of the form hi(xi), where

hi(xi) = ln[Pr(xi | Site)] - ln[Pr(xi | Non-site)]

Naive Bayes makes weaker assumptions than logistic regression about how the log odds of a site
depend on the location's landscape features. However, we pay for the added flexibility with a
loss of efficiency: it is harder to estimate a density function than it is to estimate a constant. If the
logistic assumptions are correct, logistic regression is more efficient than naïve Bayes. If naive
Bayes improves on logistic regression, it is evidence that we should consider a more flexible
relationship between the predictors and the odds that there is a site.

3.3 Tree-Based Methods

Tree methods make predictions by repeatedly splitting the data into smaller and smaller subsets
and then predicting based on the average response in each of the final subsets. The splitting
method is called recursive partitioning. First, the data set is split into two groups. Then each of
these groups is split into two groups, and so on. Each split is based on a single predictor variable
and a split point, with data having predictor values less than the split point placed in one

18

subgroup and all other data placed in the other subgroup. The splits are done to make the
responses in each subgroup as homogeneous as possible. The idea is simple, and the heart of the
algorithm is deciding what size tree to use (that is, how many splits to make). Breiman et al
(1984) is a standard monograph on trees within Statistics.

The most straightforward way to make sense of trees is to see an example, as in Figure 3.1.

Figure 3.1: A simple regression tree.

In this example, the first split is made in the variable rdedblk1 (distance to the nearest large lake
[square root]). The data are divided into locations such that rdedblk1 is less than 16.5 and
locations such that rdedblk1 is greater than or equal to 16.5. The second split is made within the
group of locations that have rdedblk1 greater than or equal to 16.5. This time the split is made in
the variable rwtpinou (distance to nearest permanent wetland inlet/outlet [square root]). These
data are divided into locations such that rwtpinou is less than 113.5 and locations such that
rwtpinou is greater than or equal to 113.5. Each split is binary (a measurement is either below a
threshold or not), and each split is made within a single variable (first rdedblk1, then rwtpinou).

The tree has three terminal nodes. All of the observations in a terminal node have the same
estimated probability. In this example, half of the locations with rdedblk1 less than 16.5 are sites,
so we estimate a response of 0.50 for all locations with rdedblk1 less that 16.5. Similarly, half of
the locations with rdedblk1 greater than or equal to 16.5 and rwtpinou less than 113.5 are also
sites, so the estimated response is 0.5. On the other hand, only 4 out of 50 locations with

19

rdedblk1 greater than or equal to 16.5 and rwtpinou greater than or equal to 113.5 are sites, so
this subset has an estimated response of 0.08.

With only three terminal nodes and only two estimated probabilities, this is an unusually stumpy
tree. However, even a much larger tree will assign only a few distinct probability estimates when
compared, for example, to logistic regression. Because all of the locations in a node have the
same estimated probability, trees make very coarse probability estimates.

The compensation for making very coarse estimates comes in the form of versatility. Trees do
not assume any particular model for the data; they simply divide the sample into dichotomies
that seem promising.

As with the other procedures discussed here, trees have a Goldilocks problem: large trees overfit
the data (leading to excess variability in the estimates), small trees under fit the data (missing
important features and causing bias), and we want a tree that's just right. Thus, tree size is a
tuning parameter. Trees grow until a minimum node size is reached. In our application, all nodes
of the tree (subsets of data) must contain at least 20 locations. We then prune the tree: cut back
branches that appear to overfit the data. Pruning uses an additional ten-fold cross-validation
separate from that we do to assess true and false positive rates.

Trees are grown one split at a time. Branches are formed by optimizing individual splits. This is
a “greedy” algorithm that tries to get as much as it can right now by optimizing this split while
ignoring all subsequent splits. This algorithm does not necessarily optimize the whole tree.
Because the partitioning is recursive, each split is contingent on the previous partitions. Slight
variations in the data may lead to noticeably different trees. In order to deal with these issues, it
is common to grow a forest of trees and then combine them in some fashion.

3.4 Perturb and aggregate

Trees are flexible and effective predictors, but they suffer from two problems: there are relatively
few distinct predicted values (coarseness of predicted values), and the tree produced is very
sensitive to minor features of the data. Researchers have proposed several modifications to the
basic tree approach that attempt to solve these problems. All of these modification work by
repeatedly making slight perturbations to the data, producing a tree for each perturbed data set,
and then combining the trees so produced. The names of these procedures are rather whimsical:
bagging, boosting, bumping. Methods of this type are called perturb and aggregate methods, and
the collection of trees produced is sometimes called a forest.

The principal method to perturb the data is the bootstrap (Efron and Tibshirani 1993). Consider
a data set of size 1000. A bootstrap sample is a random sample of size 1000 taken from the
original data set with replacement. Each of the original data observations may occur, 0, 1, 2, or
more times in the bootstrap sample. In effect, this is a random re-weighting of the original data.
Because the bootstrap sample was taken at random, it is representative of the original data and
predictors built using the bootstrap sample should be applicable to the original data.

Depending on how we apply them, bootstrap replicates of the tree procedure can be used to:

20

1. Avoid overfitting to accidents of the sample,
2. Reinforce patterns that persist despite small changes in the data.
3. Draw finer distinctions in estimated probabilities.

Bumping (Tibshirani and Knight, 1999) and bagging (Breiman, 1996) are two methods based on
bootstrapped trees.

Bootstrapping re-weights the data set at random. We may also consider more systematic re-
weighting of the data. Boosting—in particular, AdaBoost (Freund and Schapire, 1996)—is a
method that utilizes systematically re-weighted trees. In boosting, observations that were poorly
predicted in one step are given higher weight in the next step, so that the procedure eventually
concentrates on the difficult to predict cases.

3.4.1 Bumping

An important way that trees are sensitive to the particulars of the data at hand is that they make
short-sighted partitions. The algorithm doesn't know what the consequences of it's initial split
will be for the subsequent partitions. Consequently, the resulting tree may overlook important
features.

Bumping (Bootstrap UMbrella of Predictors) first creates several trees by re-sampling the data
via the bootstrap and fitting to the bootstrap samples. It then chooses the single tree with the best
performance. Since the result is a single tree, it is interpretable as a tree.

Bumping can help a classifier avoid getting stuck in a poor solution. That is, if there is a good
single-tree representation for the data, bumping has more opportunities to find it—or, at least,
not to miss it by an accident of the sample. However, because it produces a single tree, bumping
still produces a coarse prediction.

Note that bumping depends on random perturbations of the sample. Running the same procedure
twice on the same data set is liable to create two different estimates. It also depends on how
many perturbations we choose to make.

3.4.2 Bagging

Bagging (Bootstrap AGgregation) creates several trees by re-sampling the data via the bootstrap
and fitting trees to the bootstrap samples, but bagging predicts using the average of the
predictions from the multiple trees. Averaging the perturbed trees results in a more stable
predictor. Similarities across trees reinforce one another, but accidents of the algorithm tend to
cancel one another out. Averaging also allows for greater nuance in the predicted probabilities
through less coarse predictions.

Bagging maintains all the flexibility of trees while generating more nuanced and more stable
predictors, but the result is no longer interpretable as a tree. In fact, it may be difficult to interpret
the results at all.

As with bumping, bagging depends on random perturbations of the sample. Running the same

21

procedure twice on the same data set is liable to create two different estimates. The user must
also choose the number of trees to produce.

3.4.3 Double bagging

Double bagging runs the bagging prediction technique twice. First run bagging to predict the
response Y with a bagging prediction y ˆ 1. Then compute residuals r = Y − y ˆ 1. Now use the same
predictors as before, but use bagging to estimate the residuals r obtaining a second bagging
prediction y ˆ 2. Our final double bagging prediction is y ˆ = y ˆ 1 + y ˆ 2 .

When applied to Mn/Model data, a double bagging prediction using K trees in each of two
passes generally gives slightly better predictions than a single bagging prediction using 2K trees.
It may seem odd that refitting the residuals can give improved fits, but that is not uncommon for
nonlinear procedures.

3.4.4 Boosting

Boosting is another method that creates a predictor by averaging a collection of trees. However,
boosting does not form the collection of trees by re-sampling. Instead, it forms a sequence of
trees by re-weighting misclassified observations; observations misclassified in one tree have
greater weight, and thus a better chance of being correctly classified, in the next tree. The
resulting classifier is an average of the sequence of trees in which trees with lower error rates
receive more weight.

The basic recipe for boosting is as follows:
1. Fit a tree to the data.
2. Weight the tree according to its misclassification rate—trees with fewer errors receive

more weight.
3. Re-weight the data so that:

(a) The incorrectly classified observations receive more weight.
(b) The correctly classified observations receive less weight.

4. Repeat.

If the recipe repeated forever, we would never get a predictor. Therefore, the number of
iterations to use is a tuning parameter that needs to be specified by the user. Also, the re-
weighting scheme needs to be specified.

The observations that our tree mislabels are harder to account for. So, the next pass puts more
emphasis on trying to get those right. That is, it assigns increased weight to the misclassified
locations and decreased weight to correctly classified locations. It then fits a tree to the re-
weighted data. Each iteration focuses its attention on those observations that the previous rule
misclassified. The result is a collection of classifiers with different strengths. In fact, each tree is
designed to be strongest where the previous tree was weak. Because the trees have focused their
attention on different parts of the sample, their strengths tend to complement one another.

The boosted classifier averages the trees together in order to combine their various strengths, like

22

bagging. Unlike bagging, boosting assigns different weights to the trees according to their
various error rates. Furthermore, there is nothing random about boosting; it does not rely on
bootstrapping the sample.

Boosting suffers from the same issues of interpretation as bagging. Averages of trees do not
result in new trees. The boosted classifier is not clearly expressible as an equation or as a tree. It
often results in a very effective predictor, but an uninterpretable predictor.

3.5 Pros and Cons

This section summarizes advantages and disadvantages of each of the prediction methods
outlined above.

3.5.1 Logistic Regression with BIC Selection

• Because the form of the model is assumed known up to a set of coefficients, logistic
regression is readily interpretable.

• For the same reason, logistic regression is very restrictive. If the true behavior of the
population is well approximated by one of the specified models, this is not an issue.
However, this procedure has no way to discover patterns in the data.

• Because a single model is selected, only a few of the predictors will tend to have non-
zero coefficients. This tends to ease interpretation.

• Because of the large number of possible models to consider, selecting a logistic
regression using BIC will tend to be very slow.

3.5.2 Averaged Logistic Regression

• Because a linear combination of linear models is another linear model, averaged logistic
regression is also readily interpretable and similarly restrictive.

• Because we average over several models, many predictor variables will tend to have non-
zero coefficients.

• Averaged models tend to be more stable predictors than individual models.
• Because of the large number of possible models to consider, averaging logistic

regressions will tend to be very slow.

3.5.3 Naive Bayes

• Naive Bayes fits a more flexible model than logistic regression, but assumes more form
than trees.

• The resulting “model” is difficult to interpret than logistic regression because the
estimated density functions g1, ..., gk are unrestricted.

• Density functions are difficult to estimate and may require a lot of data to estimate well.

3.5.4 Trees

23

• Trees are highly interpretable.
• Trees have a very flexible form.
• Trees are computationally convenient and efficient.
• Trees are discrete, which limits our ability to distinguish between locations.
• Trees are highly sensitive to particulars of the sample, which may limit their ability to

find interesting patterns and affects their stability as predictors.

3.5.5 Bumping

• Bumping results in a tree, so it inherits the flexibility and interpretability but also the
discreteness of trees.

• Bumping guards against overlooking good predictors because of the myopic way that
trees are grown—one split at a time.

• Bootstrap re-sampling can be computationally expensive.
• Estimates are not unique.

3.5.6 Bagging

• Bagging inherits the flexibility of trees.
• Bagging alleviates the discreteness of trees.
• Bagging generally results in very stable predictors.
• Bagged trees are basically uninterpretable in form.
• Bootstrap re-sampling can be computationally expensive.
• Estimates are not unique.
• Double bagging improves prediction, but at the cost of additional computation.

3.5.7 Boosting

• Like bagging, boosting inherits the flexibility of trees, fits a smoother set of probabilities,
and generally results in very stable predictors.

• Also like bagging, boosted trees are basically uninterpretable.
• Boosting requires tuning by the user.
• There is no existing function in S-plus for boosting. Furthermore, it creates a very

complicated prediction rule making it difficult to translate into Python. This makes
boosting an extremely inconvenient method to implement. We will not attempt to
implement boosting unless it clearly outperforms alternative methods. It's too easy to
make errors and too hard to find them.

24

4. Comparison and Recommendations
The only true test of a prediction method is how well it predicts. Thus, we will compare the
prediction methods described in the previous chapter by applying them to Mn/Model data and
measuring the quality of their predictions. As described in Chapter 2, our primary criteria will be
the false positive rates obtained via cross-validation for 70% and 85% true positive rates. A
secondary criterion will be the area under the ROC curve. Gain curves and other graphical
comparisons were made, but they will not be described or displayed here in the interests of
space.

In order to compare classification methods, we fit a model using each method to data from three
regions in eastern Minnesota: Big Woods, Anoka Sand Plain, and Mille Lacs Uplands. For these
regions, two data sets were considered—an original set and an extended set with approximately
twice as many random locations. Table 4.1 summarizes the number of sites and random locations
in each data set.

 Original Extended
Big Woods Anoka Mille Lacs Big Woods Anoka Mille Lacs

Sites 862 724 1037 863 728 1037
Random 1615 1112 3203 3402 2247 6427

Table 4.1: Number of Sites and Random Locations by Data Set

Each classification method orders locations according to their predicted probability of a site.
Using these orderings, we call the set that captures 70% of all sites High Probability. The set that
captures the next 15% of sites we call Medium Probability. The High Probability locations are
the locations classified as sites to attain a 70% true positive rate. The High Probability and
Medium Probability locations together give an 85% true positive rate. Within these categories,
the lower the false positive rate, the better the method.

In the examples below, bumping and bagging were done with 11 trees: the original data and 10
bootstrap replications. Double bagging was done with 11 trees per pass. Calculations for
boosting were made external to S-Plus in a program called R.

Tables 4.2, 4.3, and 4.4 collect the results of applying the predictors to Phase 4 site data (the
mod4.site subset, which includes site centroids, secondary site locations, and random points).
Tables 4.2 and 4.3 show the false positive rates at 70% and 85% true positive rate, respectively.
Table 4.4 shows the areas under the ROC curves. All results are based on ten-fold cross-
validated predictions.

25

 Original Extended
Method Big Woods Anoka Mille Lacs Big Woods Anoka Mille Lacs
BIC Logit .19 .06 .03 .18 .06 .03
BMA Logit .19 .06 .03 .18 .07 .03
Naïve Bayes .19 .07 .04 .19 .06 .04
Tree .17 .11 .02 .20 .08 .01
Bumping .18 .10 .02 .19 .07 .01
Bagging .15 .05 .01 .12 .04 .01
Boosting .14 .05
Double Bag. .12 .03 .01 .09 .03 .01

Table 4.2: Cross-validated False Positive Rates for 70% True Positive Rate.

 Original Extended
Method Big Woods Anoka Mille Lacs Big Woods Anoka Mille Lacs
BIC Logit .35 .15 .08 .34 .15 .07
BMA Logit .34 .14 .08 .33 .15 .07
Naïve Bayes .36 .20 .11 .37 .18 .11
Tree .36 .18 .07 .36 .21 .06
Bumping .37 .19 .08 .38 .20 .06
Bagging .29 .13 .04 .26 .12 .04
Boosting .28 .12
Double Bag. .24 .11 .03 .20 .11 .03

Table 4.3: Cross-validated False Positive Rates for 85% True Positive Rate.

 Original Extended
Method Big Woods Anoka Mille Lacs Big Woods Anoka Mille Lacs
BIC Logit .827 .907 .954 .831 .904 .956
BMA Logit .829 .908 .955 .833 .905 .957
Naïve Bayes .821 .895 .939 .825 .900 .938
Tree .820 .875 .947 .807 .880 .956
Bumping .809 .878 .945 .812 .887 .950
Bagging .862 .929 .973 .875 .934 .976
Double Bag. .875 .939 .971 .890 .940 .973

Table 4.4: Cross-validated areas under the ROC curve.

26

Double bagging is consistently the best, followed by boosting (where available), and bagging.
After these three, there is usually a large step down in quality of prediction, although which
method is the next best varies between data sets. Because boosting is more difficult to implement
in S-Plus and GIS, and because boosting is sandwiched between bagging and double bagging in
terms of quality of prediction, boosting will not be considered further.

Examination of Tables 4.2 through 4.4 also shows that bagging and double bagging consistently
benefit from additional random locations. This suggests that regional models in Mn/Model
Phase 4 should be fit with more random locations than was done in Phase 3.

If we use bagging or double bagging, we must decide how many trees to use. In general, more
passes is better (double better than single, triple better than double), and more trees per pass is
better, but there are diminishing returns for both the number of passes and the number of trees.
In addition, implementing the bagging procedures in GIS is possible, but tedious, and doubling
the number of trees used doubles the amount of effort required to implement them. Therefore,
control on the number of trees is needed. Table 4.5 shows the cross-validated false positive rates
at 85% true positive rate for various numbers of passes (single, double, and triple bagging) and
numbers of trees per pass. For single bagging, there is relatively little improvement after 10 or
11 trees. Double and triple bagging may improve the results slightly for the same total number
of trees, but they show the largest improvements when using two or three passes with a fairly
large number of trees each.

Bagging
Single
Single
Single
Single
Single
Single

Trees/pass
3
6
11
16
21
24

Big Woods
.33
.30
.27
.27
.27
.23

Big Woods ext.
.34
.28
.26
.24
.24
.25

Anoka
.19
.14
.12
.14
.12
.12

Double 5 .27 .25 .12
Double 6 .29 .24 .11
Double 8 .28 .25 .11
Double 10 .26 .22 .12
Double 12 .24 .22 .12

Triple
Triple
Triple

8
10
12

.24

.24

.25

.22

.22

.22

.09

.11

.10

Table 4.5: Cross-validated False Positive Rates for 85% True Positive Rate for
various numbers of passes and trees per pass.

Based on its performance in these regions and the resources required to implement the prediction
in GIS, we recommend that Bagging with 11 total trees be used to classify locations.

27

5. Example

In this example, we will go through a mock analysis using the new Phase 4 S-Plus functions and
extended data from the Big Woods region. (In the software, regions are indicated by a region
abbreviation, which for the extended Big Woods is bgwd4ex. This abbreviation will appear
repeatedly.) We will look at a subset of the output produced and describe how to interpret it.
Much more complete documentation on these functions and the output is available in the “User's
Guide for Mn/Model Phase 4 S-Plus Software.”

In the example below, S-Plus commands appear after a prompt “> “, and commands, variable
names, and output are shown in a monospaced font.

The first step is to read the data into S-Plus using the mnmodel.readdata() function:

> mnmodel.readdata("bgwd4ex",rootvars=”none”)
Variables in bgwd4ex.data.all are:
 [1] "Id" "X" "Y" "Abl" "Alluv"
 [6] "Blg" "Ded.blk1" "Ded.cors" "Ded.or30" "Ded.priv"
[11] "Ded.swm" "Dedbwet1" "Dint" "Dir.ww" "Dislksed"
[16] "Dis.asbi" "Dis.br" "Dis.bw" "Dis.con" "Dis.hdw"
[21] "Dis.maj" "Dis.min" "Dis.mix" "Dis.ok" "Dis.pap"
[26] "Dis.pibf" "D.dra30" "Dis.pr" "Dis.rb" "Dis.sug"
[31] "Ht90" "Lk1.size" "Maj.area" "Min.area" "Mrdiv990"
[36] "Plk1size" "Rel90a" "Rgh90" "Slp" "Terr"
[41] "Vaw1" "Vpw1" "Lk.inout" "Lkpinout" "Wtpinout"
[46] "Site.type" "Phase3" "Phase4" "sin.Dir.ww" "cos.Dir.ww"

Variables in bgwd4ex.subsets are:
 [1] "p3.cent" "p3.sec" "p3.neg" "p3.aux"
 [5] "p4.cent" "p4.sec" "p4.line" "p4.poly"
 [9] "p4.surv" "p4.aux" "all.rand" "no.rand"
[13] "all.locations" "all3.sites" "all4.sites" "all3.survey"
[17] "all4.survey" "mod3.cent" "mod3.site" "mod3.surv"
[21] "mod4.cent" "mod4.site" "mod4.surv" "CVsets"
[25] "SCVsets" "clusters"

Variables in bgwd4ex.transformed.vars are:
[1] "Dir.ww"

Total number of locations: 9420

 Number of Phase 4 centroid sites: 712
 Number of Phase 4 secondary sites: 111
 Number of Phase 4 line sites: 0
 Number of Phase 4 polygon sites: 40
Total number of Phase 4 sites: 863

 Number of Phase 3 negative surveys: 1274
 Number of Phase 4 DOT surveys: 3710
 Number of Phase 4 sites as surveys: 171
Total number of Phase 4 non-site survey locations: 5155

Total number of random: 3402

Total number for Phase 4 site-centroid models: 4114
Total number for Phase 4 site models: 4265
Total number for Phase 4 survey models: 9420

The function establishes some S-Plus data sets and prints some informative output about the
data. First, it prints the names of all the variables present in the data set. Next, it prints the

28

names of subsetting variables that it created to permit analysis of various subsets of data. The
subsetting variables most likely to be used are mod4.site and mod4.surv, which indicate
the data to be used in Phase 4 models of potential for sites and survey bias, respectively. Third,
it prints the names of any variables that it transformed. For example, direction variables are
converted to their sines and cosines, and, by default, a list of variables with distributions skewed
to the right are transformed to their square roots (there is no need to use the square roots when
using tree-based methods such as bagging). Finally, it prints out counts of data falling into
different categories: total number, different types of sites, different types of negative surveys,
random points, and the number of points used Phase 4 site and survey models.

The next step is optional. A user can request that descriptive statistics and graphics be produced
for the variables in the data set. Some of these summaries are done separately for sites, negative
surveys, and random points, so this step should only be done on subsets that contain all three
types. Usually this means that the selected subset will be mod4.surv.

This step produces many pages of output and many plots. To manage this avalanche, results
from different analyses are placed in different directories on the computer. The user indicates
the directory with a user-selected label. We will use the label “example”, so output will appear
in the directory BGWD4NEW.example.summaries. (Note: you should use different labels
for site and survey models; if you don't, the results of your second analysis will over write those
of your first analysis.)

Variable summaries are produced using the function mnmodel.var.summaries(). We
must indicate the subset we will use (mod4.surv) and the label we want (example).

> mnmodel.var.summaries("BGWD4NEW",mod4.surv,"example")

There is no output visibly printed by S-Plus, because all output has been redirected to files in the
BGWD4NEW.example.summaries directory. The first summary is descriptive statistics. All
descriptive statistics are placed in the file variable.summary.txt in the output directory.
The output to this file begins with means and standard deviations of the variables, reported
separately for sites, negative survey points, and random points. In our example, the file begins
with Abl (elevation) and Alluv (on alluvium) before continuing through the remainder of the
variables.

Means and standard deviations of variables:

, , Abl
 Sites Negative Surveys Random Points
mean 942.92816 927.4675 987.26543
 sd 91.70153 98.5058 77.79021

, , Alluv
 Sites Negative Surveys Random Points
mean 0.07763615 0.09253152 0.02557319
 sd 0.26775334 0.28980292 0.15788138

From this output we can see the mean elevations for sites, negative surveys, and random points
are 942.9, 927.5, and 987.3 respectively, and the standard deviations of elevation for these
subsets are 91.7, 98.5, and 77.8. Thus sites and negative surveys generally occurred at lower
elevations (probably near water), and there is a bit less variability in the elevations of the random

29

points.

After means and variances come two-sample Wilcoxon rank-sum tests for each variable
comparing site data to random location data, and negative survey data to random location data.
The two-sample Wilcoxon test is a nonparametric test of location (center or median). That is, it
asks whether there is evidence that two groups (that are otherwise comparable) are centered at
different values, and the test does not rely on the shape of the underlying group distributions.
The p-value answers the question “Assuming that the two groups really had the same center, how
likely are we to have observed data with centers this far apart (as measured by the Wilcoxon)?”
Small p-values indicate that the groups have different centers. For both comparisons, the
Wilcoxon statistic and the p-value are reported. Our file continues

Wilcoxon tests of variables:

, , Abl
 Sites vs Random Surveys vs Random
Wilcoxon -1.350454e+01 -2.957183e+01
 p-value 1.470355e-41 3.442133e-192

, , Alluv
 Sites vs Random Surveys vs Random
Wilcoxon 7.321045e+00 1.221593e+01
 p-value 2.460474e-13 2.555507e-34

We show only the first two variables, and we see the results of comparing site to random and
negative survey to random for elevation and alluvium. All of these p-values are tiny, so there is
overwhelming evidence against the four hypotheses that (for this region) these variables are
equally distributed for sites, negative surveys, and random points. For a site model, this is all to
the good, because the whole foundation of Mn/Model is that sites are generally located on
recognizable landscapes. However, this also shows that there is bias in the selection of survey
locations.

Finally, the Spearman rank correlation matrix of the variables based on all of the data is printed.
The Spearman rank correlation coefficient indicates how two variables vary together: positive
values indicate that they vary directly (go up and down together); negative values indicate that
they vary inversely (one goes up while the other goes down). The further the coefficient is from
zero, the stronger the relationship. The rank correlation coefficient is bounded between one and
negative one. A subset of the correlation matrix is presented here:

Spearman rank correlations:
 Abl Alluv Blg Ded.blk1 Ded.cors
 Abl 1.000 -0.415 0.013 -0.307 0.161 ...
 Alluv -0.415 1.000 0.063 0.324 -0.108 ...
 Blg 0.013 0.063 1.000 0.021 0.074 ...
 Ded.blk1 -0.307 0.324 0.021 1.000 0.131 ...
 Ded.cors 0.161 -0.108 0.074 0.131 1.000 ...

We see, for example, that Abl (elevation) is negatively related to Ded.blk1 (the distance to edge
of the nearest big lake)---locations at higher elevations are closer to big lakes.

After summary statistics, mnmodel.var.summaries() produces a pdf graphics file for each

30

variable. This file contains a stack of three histograms showing the distribution of the variable
separately for sites, negative surveys, and random locations. Histograms represent data by the
area of the bars in the plot, so the bigger the bar at a given value of the variable, the more data
are in that range. The files are named var.1.pdf, where “var” is the variable.

Figure 5.1 shows Abl.1.pdf (elevation). In this figure, we can see that negative survey points
have a fairly sharp peak around 950 to 970 feet of elevation, but sites are more spread out in the
middle. All three groups show a tail on the left, indicating a fair number of points at elevations
considerably lower than the bulk of the data.

Figure 5.1. Sample histograms for elevation separately for sites, negative
surveys, and random locations.

It is now time to fit a model. To do this we use the function mnmodel.fit(). This function
needs to know what dataset we are using, what subset (type of model) we are doing, what label
to use for output, and which fitting method to use. Thus, a typical command might be

> mnmodel.fit("bgwd4ex",mod4.surv,"example","bagging")
Constructing bgwd4ex.example.results

Available predictors:
 [1] "Id" "X" "Y" "Abl" "Alluv"

31

 [6] "Blg" "Ded.blk1" "Ded.cors" "Ded.or30" "Ded.priv"
[11] "Ded.swm" "Dedbwet1" "Dint" "Dir.ww" "Dislksed"
[16] "Dis.asbi" "Dis.br" "Dis.bw" "Dis.con" "Dis.hdw"
[21] "Dis.maj" "Dis.min" "Dis.mix" "Dis.ok" "Dis.pap"
[26] "Dis.pibf" "D.dra30" "Dis.pr" "Dis.rb" "Dis.sug"
[31] "Ht90" "Lk1.size" "Maj.area" "Min.area" "Mrdiv990"
[36] "Plk1size" "Rel90a" "Rgh90" "Slp" "Terr"
[41] "Vaw1" "Vpw1" "Lk.inout" "Lkpinout" "Wtpinout"
[46] "Site.type" "Phase3" "Phase4" "sin.Dir.ww" "cos.Dir.ww"

Total number of locations: 9420
Total number of sites: 863
Total number of survey points: 5155
Total number of non-random: 6018
Total number of random: 3402
Eliminating non-predictors

Eliminating previously transformed variables from predictors:
[1] "Dir.ww"

Eliminating collinear and/or nearly constant variables from predictors:
[1] "Dis.mix"

Fitting with these variables:
[1] "Abl" "Alluv" "Blg" "Ded.blk1" "Ded.cors"
 [6] "Ded.or30" "Ded.priv" "Ded.swm" "Dedbwet1" "Dint"
[11] "Dislksed" "Dis.asbi" "Dis.br" "Dis.bw" "Dis.con"
[16] "Dis.hdw" "Dis.maj" "Dis.min" "Dis.ok" "Dis.pap"
[21] "Dis.pibf" "D.dra30" "Dis.pr" "Dis.rb" "Dis.sug"
[26] "Ht90" "Lk1.size" "Maj.area" "Min.area" "Mrdiv990"
[31] "Plk1size" "Rel90a" "Rgh90" "Slp" "Terr"
[36] "Vaw1" "Vpw1" "Lk.inout" "Lkpinout" "Wtpinout"
[41] "sin.Dir.ww" "cos.Dir.ww"

Doing bagging ... done.
Cross-validating, please be patient: 1 2 3 4 5 6 7 8 9 10 done.

Spatially cross-validating, please be patient: 1 2 3 4 5 6 7 8 9 10 done.

The output begins with a repetition of summary information about variables present, variables
transformed, variables used, and how many data of various types are used. Then it gets down to
the business of fitting the model. Because we are doing ordinary and spatial cross-validation, it
actually does the fitting 21 times. This could take some time, so it prints progress information
letting you know which fit it is doing.

Now that we've fit the model, we need to get summaries of how well the model worked as well
as information we will use to actually implement the model in GIS. We use the
mnmodel.fit.summaries() function to do this. The ordinary usage of this function takes
three arguments: a region, a label, and a method. You may optionally set the a priori probability
for sites, which will affect only the gain plots shown below. The default for the a priori
probability is .01.

> mnmodel.fit.summaries(“BGWD4NEW”,”example”,”bagging”)

Output from mnmodel.fit.summaries() goes into the
REGIONABBR.label.summaries directory, which in our example is
bgwd4ex.example.summaries . The output consists of a text file named
method.summary.txt (bagging.summary.txt in the example) and either 8 or 13
summary graphics in pdf format, the number depending on whether spatially cross-validated
predictions are available.

32

https://cos.Dir.ww
https://sin.Dir.ww

Let us begin with a discussion of the graphs, which are produced for the predictions, cross-
validated predictions, and, if available, spatially cross-validated predictions. For these kinds of
predictions we produce cumulative plots, ROC curves, and gain curves (Chapter 2). For cross-
validated data, we also produce graphs with multiple cumulative curves and ROC curves, one for
each cross-validation subset. The graphs are stored in the files with the names:

appcumpred.method.pdf, appgain.method.pdf, approc.method.pdf.

cvcumpred.method.pdf, cvgain.method.pdf, cvroc.method.pdf, cvcumpred.multi.method.pdf,
cvroc.multi.method.pdf.

scvcumpred.method.pdf, scvgain.method.pdf, scvroc.method.pdf, scvcumpred.multi.method.pdf,
scvroc.multi.method.pdf.

The “app” prefix stands for “apparent” and indicates results for predictions constructed using all
the data. The “cv” and “scv” prefixes indicate results for cross-validated and spatially cross-
validated predictions. The “multi” indicates separate curves for each cross-validation subset. In
all cases, the “method” is replaced with the method of interest, for example,
approc.bagging.pdf. The cumulative predicted plots allow us to see the actual values
predicted for different locations and to compare the distributions of predictions for sites and non-
sites. An example cumulative predicted plot is shown in Figure 5.2.

We see in Figure 5.2 two bands of points, the lower band for random points and the upper band
for non-random points (sites and surveys). The curves show the cumulative distributions, that is,
fractions of points with values less than or equal to the current value, for random points (dashed)
and sites (solid). For a good prediction, the random points should cluster to the left and their
cumulative should rise steeply and then flatten near the top of the graph; and the sites should
cluster to the right, with their cumulative staying low and then rising sharply on the right. The
greater the area between the two curves, the better the prediction method is doing.

The “multi” form of the plot shows the same points, but the cumulative curves are plotted
separately for the 10 cross-validation subsets. This illustrates the variability in the quality of the
prediction. This is illustrated in Figure 5.3. In this example, the curves are fairly stable across
the subsets.

33

Figure 5.2. Cumulative apparent predicted plot showing separate curves for sites
(solid) and non-sites (dotted).

Figure 5.3. Multiple form of cumulative predicted plots, showing separate curves
for each cross-validation subset.

34

The ROC curve plots the true positive rate (vertical axis) against the false positive rate
(horizontal axis) for a large number of potential thresholds. As you adjust these thresholds, you
change the fractions of sites and non-sites that are classified as sites (these are the true and false
positive rates). The curve starts in the lower left hand corner and moves to the upper right hand
corner. Ideally, the curve should move up to the top very quickly and then move along the upper
boundary. This gives us maximum true positive rate with minimum false positive rate. The
diagonal line corresponds to randomly guessing site versus random. The false positive rates for
.7 and .85 true positive rates are highlighted. While our principal figure of merit is the false
positive rate at a .85 true positive rate, the area under the ROC curve gives an overall summary
of the quality of the prediction. Figure 5.4 shows the ROC curve based on cross-validated
predictions.

The “multi” form of the graph plots the ROC curve separately for each cross-validation subset.
Figure 5.5 shows an example of these multiple ROC curves for the same data shown in Figure
5.4. Again we see that the ROC curves are fairly stable.

The final graph is the gain curves. These curves are already somewhat complex, so we only plot
them for the full data set, and not separately by cross-validation subsets. The gain curve depends
on the a priori probability used when the summary function was called. The gain referred to in
the name of the curve is the ratio of the posterior probability of a location being a site to the prior
probability of a location being a site. “Posterior” means after seeing the data and doing the
classification. The upper curves are probabilities for locations that were classified to be sites; we
want these curves to be as high as possible so that as large a fraction as possible of those
locations classified as sites actually are sites. Conversely, the lower curves are probabilities for
locations classified as non-sites; we want these curves to be as low as possible. The curves show
these ratios as a function of the true and false positive rates.

35

Figure 5.4. ROC curve for cross-validated predictions.

36

Figure 5.5. ROC curves separately for each cross-validation subset.

37

Figure 5.6. Gain curves for sites and non-sites.

38

In addition to graphical summaries, we also have text/numeric summaries of the results in a text
file named method.summary.txt (bagging.summary.txt in the example). These files
consist of a method-specific part and a generic part. We begin with an example of the generic
part and describe the contents.

Apparent false positive rates and cutoffs
at .70 and .85 true positive rates
 Cutoff TPR FPR
 HIGH 0.8075281 0.70 0.02
MEDIUM 0.6026849 0.85 0.09

The output begins with apparent false positive rates, which are based on predictions from the full
data set. Here is how to interpret the output. For this prediction (bagging in this example), if we
use a cutoff of .8075 and declare locations with predictions greater than the cutoff to be sites,
then we capture 70% of the sites (true positive rate of 70%) but only 2% of the random points
(false positive rate of 2%). Similarly, if we choose a cutoff of .6027, then we capture 85% of the
sites and 9% of the random points.

The apparent error rates are too optimistic, so we also compute error rates using cross-validation.
Our 10-fold cross-validation fits the model using 90% of the data and then uses that model to
predict the 10% of the data held out. We cycle through 10 different subsets of hold out data until
all locations were predicted using models fit excluding the points of interest. Cross-validated
results are summarized next.

Cross-validated true and false positive rates and
cutoffs at nominal .70 and .85 true positive rates

, , HIGH
 Cutoff TPR FPR
 1 0.8096584 0.660 0.040
 2 0.7989974 0.710 0.030
 3 0.8027825 0.680 0.020
 4 0.8059832 0.710 0.040
 5 0.8101571 0.690 0.030
 6 0.8073968 0.690 0.050
 7 0.8142347 0.660 0.040
 8 0.8082299 0.720 0.030
 9 0.8160169 0.670 0.040
 10 0.8104025 0.670 0.030
 Average 0.8083859 0.686 0.035
Combined 0.7833581 0.700 0.040

, , MEDIUM
 Cutoff TPR FPR
 1 0.6041536 0.770 0.120
 2 0.6076615 0.830 0.120
 3 0.5999492 0.830 0.110
 4 0.5936856 0.850 0.140
 5 0.6077833 0.830 0.120
 6 0.5994719 0.820 0.140
 7 0.5954879 0.800 0.150
 8 0.5961668 0.840 0.110
 9 0.6019120 0.820 0.190
 10 0.6043290 0.800 0.120
 Average 0.6010601 0.819 0.132
Combined 0.5484972 0.850 0.170

39

Begin with the “High” results, which are supposed to capture 70% of the sites, and consider
group 1. We fit a model to 90% of the data and find the cutoff that gives us 70% true positive
rate in the data used to fit the model. The cutoff is .8097. We now apply this model and cutoff
to the 10% of the data held back. When we do this, we find that we actually obtain a 66% true
positive rate (instead of the nominal 70%) and a 4% false positive rate. Similarly, when we hold
back group 10, we select a cutoff of .8104 and obtain a TPR of 67% and a FPR of 3%.
Averaging across the 10 groups (the line labeled “Average”), the cutoff is .8083, the TPR is
69%, and the FPR is 3.5%. The average cutoff of .8083 is pretty close to the apparent cutoff
from above (.8075), so that is reassuring, but the TPR that we actually attain is below the 70%
that we wanted. To get 70% TPR, we must reduce the cutoff to .7834 (the line labeled
“Combined”), which gives us a FPR of 4%. Thus the apparent cutoffs are too optimistic, and we
really should use a lower cutoff to attain 70% TPR when predicting to new data. (Most site
models show differences between apparent and cross-validated results much greater than this
example survey model.)

The “Medium” results tell a similar story. They should have a TPR of 85%, but when cross-
validated, the TPR only averages about 82%. We need to lower the threshold to .5485 to capture
85% of the sites when predicting to new data.

Results from spatial cross-validation are even more pessimistic, but that is because they simulate
a much more challenging modeling situation. In cross-validation, we predict using models fit
without benefit of the data we are trying to predict. However, since the 10 subsets are chosen
randomly, there is a good chance that landscapes similar to where we are trying to predict are
included in the modeling subset. In spatial cross-validation, we exclude data in small spatial
clusters rather than one point at a time. Spatial cross-validation simulates predicting into
landscapes where we've never had any data before! We have to expect that our predictions will
work more poorly, and, unfortunately, our expectations are met.

Spatial cross-validation results are reported just like the cross-validation results. For example,
when trying to capture 85% of the sites, our average threshold is .606 and we achieve an average
TPR of 52% with a FPR of 12%. To get our desired TPR of 85%, we must lower the threshold
to .356, which gives us a FPR of 38%. These results should be compared with .548 and FPR of
17% for simple cross-validation.

Spatial cross-validated true and false positive rates and
cutoffs at nominal .70 and .85 true positive rates

, , HIGH
 Cutoff TPR FPR
 1 0.8002406 0.560 0.020
 2 0.8380684 0.050 0.000
 3 0.8259919 0.350 0.020
 4 0.8474061 0.060 0.030
 5 0.8163326 0.080 0.010
 6 0.8298684 0.020 0.000
 7 0.7338127 0.380 0.090
 8 0.8054010 0.210 0.020
 9 0.7975499 0.370 0.030
 10 0.8104839 0.390 0.040
 Average 0.8105155 0.247 0.026
Combined 0.4460000 0.700 0.250

, , MEDIUM

40

 Cutoff TPR FPR
 1 0.6085676 0.750 0.090
 2 0.6184312 0.290 0.070
 3 0.6082854 0.590 0.080
 4 0.6292347 0.260 0.110
 5 0.6230563 0.430 0.140
 6 0.6030965 0.440 0.120
 7 0.5632239 0.490 0.190
 8 0.6111954 0.720 0.150
 9 0.5863917 0.730 0.100
 10 0.6082661 0.460 0.110
 Average 0.6059749 0.516 0.116
Combined 0.3556858 0.850 0.380

We recommend using the “combined” cross-validated cutoffs to do classification. If you know
that you are predicting into a landscape unlike the rest of your data set, you could consider the
more pessimistic spatially cross-validated threshold.

The output file also contains method-specific information for how to implement the prediction
routine. Calling this part of the output “arcane” would be too generous. Details of how to
interpret and use the method-specific output can be found in the “User's Guide for Mn/Model
Phase 4 S-Plus Software.”

41

6. Conclusion

Phase 4 of Mn/Model provides the opportunity to improve both the archaeological data bases and
statistical prediction methods that were used in Phase 3. Among the methods considered here,
bagging (bagged trees), double bagging (bagged trees twice), and boosting consistently
outperformed the alternatives. Boosting does not have a native implementation in S-Plus, and it
would appear fairly challenging to port the implementation from R to S-Plus. For this reason, we
do not recommend boosting. Double bagging generally outperformed bagging, although
typically not by a large amount. However, double bagging does best with two passes each with a
fairly large number of trees, so double bagging will, in general, require doubling the already
considerable effort needed to implement bagging in GIS. For this reason, we cannot
wholeheartedly recommend double bagging.

The best compromise between accuracy and efficiency is bagging, using a single pass with
roughly 10 total trees (11 is the default in the S-Plus software supplied with this project). As was
shown in Chapter 4, bagging provides a 15% to 50% improvement in false positive rate over the
method used in Phase 3 (logistic regression with BIC selection) depending on data set and true
positive rate. Software to implement bagging has been provided as part of this project and is
documented in “User’s Guide for Mn/Model Phase 4 S-Plus Software.”

42

7. References
Breiman, L. (1996). “Bagging Predictors,” Machine Learning 26: 123-140.

Breiman, L., Friedman, J., Olshen, R. and Stone, C. (1984). Classification and Regression Trees,
Wadsworth, Belmont, CA.

Efron, B., and Tibshirani, R. (1993). An Introduction to the Bootstrap, Chapman and Hall,
London.

Freund, Y., and Schapire, R. (1996) Experiments with a New Boosting Algorithm, Machine
Learning: Proceedings of the Thirteenth Annual Conference, Morgan Kauffman, San Francisco,
CA, pp. 148-156.

Hand, D., and Yu, K. (2001). “Idiot's Bayes: Not So Stupid after All?,” International Statistical
Review, 69: 385-398.

Hartigan, J. A. (1975). Clustering Algorithms, Wiley, New York, NY.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learning,
Springer, New York, NY.

Hudak, G. J., Hobbs, E., Brooks, A., Sersland, C. A., and Phillips, C. (2002). Mn/Model: A
Predictive Model of Precontact Archaelogical Site Location for The State of Minnesota, final
report to Mn/DOT 73217, Minnesota Department of Transportation, St. Paul, MN.

Mosteller, F., and Tukey, J. W. (1977). Data Analysis and Regression, Addison-Wesley,
Reading, MA.

Pepe, M. S. (2003). The Statistical Evaluation of Medical Tests for Classification and
Prediction, Oxford, New York, NY.

Schwarz, G. (1978). “Estimating the Dimension of a Model,” The Annals of Statistics, 6: 461-
464.

Tibshirani, R., and Knight, K. (1999). “Model Search by Bootstrap “Bumping”,” Journal of
Computational and Graphical Statistics, 8: 671-686.

Yerushalmy, J. (1947). “Statistical Problems in Assessing Methods of Medical Diagnosis with
Special Reference to X-Ray Techniques,” Public Health Rep. 62: 1432-1449.

43

	Structure Bookmarks

