WORK PLAN [Draft 03/07/2017] 2017 MnROAD Unbound Layer Evaluation Using Intelligent Compaction Ingios Geotechnics, Inc.

Problem Statement

Re-construction of the 2017 MnROAD-NRRA low volume and mainline road test sections will involve several pavement and foundation materials (recycled materials and large aggregate bases) that will be evaluated and tested during construction and long-term (see Appendix).

Although the final evaluation details are currently being developed, key research objectives include:

- Developing and accessing methods to characterize the pavement foundation materials as part of the quality inspection process,
- Assessing pavement system performance properties over time (drainability, modulus of foundation layers, deformation under traffic loading, durability, and uniformity), and
- Determining best practices for how to incorporate the measured in situ properties and pavement system performance results into pavement design for future implementation.

Ingios Geotechnics, Inc. has expertise in pavement system characterization and assessment of pavement design input values using automated plate load testing (APLT), validated integrated compaction monitoring (VICM), and geospatial drainage assessment using in situ pavement permeameter test (PPT) measurements. Ingios has prepared the following work plan details are part of the proposed no-cost partnership agreement with MnDOT to provide testing and analysis for selected test sections.

Project Goals

The goal of this Ingios testing and analysis is to develop spatial coverage maps of calibrated mechanistic design input parameter values (e.g., resilient/elastic modulus, modulus of subgrade reaction) on finished unbound foundation layers for the test cells identified in Table 1.

Scope of Work

To achieve the project goal, the following scope of work and associated project tasks have been identified:

- 1. Mobilize Ingios vibratory compactor outfitted with the VICM and RTK-GPS system along with the APLT and PPT to MnROAD.
- 2. Conduct on-site safety briefing with all personnel involved with Ingios activates prior to initiating work tasks.
- 3. Using the VICM equipped roller (Figure 1), map the cell areas listed in Table 1 to produce various index and modulus map results.
- 4. Perform independent field calibration testing, involving 12 to 20 test locations using the APLT (Figure 2). This process with include testing areas of interest in the designated cells based on the VICM mapping results. APLTs will involve using a 12, 18, 24, or 30 in. diameter plate with a 2-layer sensor kit to obtain stress-dependent moduli values for

both the aggregate base and the underlying subgrade layer. The plate diameter and testing approach will be determined based on the VICM results.

- 5. Perform five PPTs (Figure 3) in each cell. Select an additional one to three cells to perform a spatial test point layout (20 to 40 test points) for drainage analysis.
- Select up to three test locations for extended cycle APLT permanent deformation tests to characterize the permanent deformation response of the foundation layer system under cyclic loading with up to 10,000 loading cycles.
- 7. Produce data summary and calibration reports.
- 8. Provide raw data in formats requested by MnDOT.
- 9. Pending input from state DOT design engineers, provide recommendations for implementation of test results in term of each state design methodology.
- 10. Prepare a brief webinar to summarize all findings and deliver to NRRA groups as requested.

A review of the current pavement design procedures for the participating NRRA states was conducted and summarized in Table 2. The design input parameters are elastic modulus (E), resilient modulus (M_r), modulus of subgrade reaction (k), R-value, California bearing ratio (CBR), and structural layer coefficients which are correlated to resilient modulus. In the field calibration efforts with VICM, field testing will be conducted using stress-dependent M_r or E and k-value determined from APLT testing.

Successful completion of the proposed testing is contingent upon being provided timely updates as to construction schedules and access timeline for the cells/completed unbound layers. The partnership agreement outlines Ingios and MnDOT responsibilities to facility successful and safe completion of the proposed testing.

Roadway	2017 Study	Cell	Unbound Distances (Feet)	Unbound Materials to Compact (layers - bottom to top)
	PCC Early Traffic Opening	124 - 424	507	Top of sand Subgrade 6" Class 6 Aggregate Base
		127	282.5	Top of clay subgrade 18" large aggregate subbase (1 lift) 6" Class 6 Aggregate Base
Low Volume	Large Subbase Aggregate	227	285	Top of clay subgrade 18" large aggregate subbase (2 lifts) 6" Class 6 Aggregate Base
Road	[3.5 in. HMA Standard Mix]	128	285	Top of clay subgrade 9" large aggregate subbase 6" Class 6 Aggregate Base
		228	285	Top of clay subgrade 9" large aggregate subbase 6" Class 5Q Aggregate Base
		139	280	Top of clay Subgrade
	Fiber Reinforced PCC	239	285	4" common borrow 6" Class 5 Aggregate Base
		506	134	
Mainline	Fiber Reinforced PCC	606	135	Top of 3" existing Class 5
	Tiber Reinfolded FCC	706	135	11" Class 5Q Aggregate Base
		806	135	

Table 1. Proposed MnROAD test cells and unbound layers for evaluation by Ingios research team

Table 2. Summary of pavement foundation layer inputs with existing pavement design procedures at the NRRA participating states.

STATE	PAVEMENT	DESIGN DESCRIPTION	SUBGRADE INPUTS	BASE/SUBBASE INPUTS
СА	Flexible	HMA and base/subbase layer thickness based on R- value of the subgrade and Traffic Index	R-Value ¹	R-Value ¹
CA	Rigid	PCC and base/subbase layer thickness based on R- value of the subgrade and Traffic Index	R-Value ¹	Resilient Modulus ²
IL	Flexible	Modified AASHTO Design procedure. Thickness design based on traffic factor and estimated structural number.	IBR value	Structural layer coefficients (a ₂ , a ₃)
	Rigid	Modified AASHTO Design procedure. Thickness design based on traffic factor and IBR or k-value.	IBR value or k-value ³	N/A [only minimum thickness]
MI	Flexible	Pavement ME Design [Similar to AASHTOWare [™]] – Level 2 or 3 (Typical values)	Resilient Modulus ²	Resilient Modulus ²
IVII	Rigid	Pavement ME Design [Similar to AASHTOWare [™]] – Level 2 or 3 (Typical values)	Resilient Modulus ²	Resilient Modulus ²
мо	Flexible	AASHTO Pavement ME Design	Resilient Modulus ⁶	Resilient Modulus ⁶
	Rigid	AASHTO Pavement ME Design	Resilient Modulus ⁶	Resilient Modulus ⁶

STATE	PAVEMENT	DESIGN DESCRIPTION	SUBGRADE INPUTS	BASE/SUBBASE INPUTS
MN	Flexible	MnPAVE-Flexible with basic, intermediate, and advanced level. Advanced level requires moduli of all layers, while basic and intermediate levels require typical values or DCP test results, R-value results.	R-value ⁴ (basic/int) or Resilient Modulus (advanced)	DCP index ⁴ (basic/int) or Resilient Modulus (advanced)
	Rigid⁵	MnPAVE-rigid uses MEPDG level 3 based design procedure.	Resilient modulus	Resilient Modulus
wi	Flexible	AASHTO 1972 design procedure. Thickness design based on design ESALs, soil support value, and estimated structural number.	Soil support value (correlated to CBR)	Structural layer coefficients (a ₂ , a ₃)
	Rigid	AASHTO 1972 design procedure. Thickness design based on design ESALs, working stress, and modulus of subgrade reaction (k)	k-value	NA

¹California R-value is a measure of resistance to deformation of the soils under saturated conditions and traffic loading as determined by the stabilometer test (CT301). Typical range between 5 (very soft) to 80 (treated base material). Typical values provided based on soil classification/ region.

²Typical resilient moduli vales are provided in the design guide based on the material type.

³Illinois bearing ratio (IBR) is a slight modification of CBR test run after 4-days of soaking. Typical values are provided based on soil classification (ranges between 2 and 20). Modulus of subgrade reaction (k) value vs. IBR is provided in the design nomographs.

⁴Minnesota R-value determined from modulus value (R = [0.41+0.873*(subgrade modulus/1000)]^1.28)

⁵MnPAVE-Rigid design procedure for PCC bonded overlay over HMA uses the ACPA procedure to determine composite k-value based on subgrade k-value and aggregate layer resilient modulus. <u>http://apps.acpa.org/applibrary/KValue/</u>

⁶personal communication, 03/02/2017, John P. Donahue, P.E., Construction and Materials Liaison Engineer, MoDOT

CalTrans Highway Design Manual - http://www.dot.ca.gov/hg/oppd/hdm/pdf/english/HDM Complete 07Mar2014.pdf

ILDOT Pavement Design Manual - http://www.idot.illinois.gov/Assets/uploads/files/Doing-Business/Manuals-Split/Design-And-Environment/BDE-Manual/Chapter%2054%20Pavement%20Design.pdf

MDOT User Guide for ME Pavement Design:

https://www.michigan.gov/documents/mdot/MDOT Mechanistic Empirical Pavement Design User Guide 483676 7.pdf

MnDOT Pavement Design Manual: www.dot.state.mn.us/materials/pvmtdesign/manual.html

WIDOT Facilities Development Manual: http://wisconsindot.gov/rdwy/fdm/fd-14-10.pdf

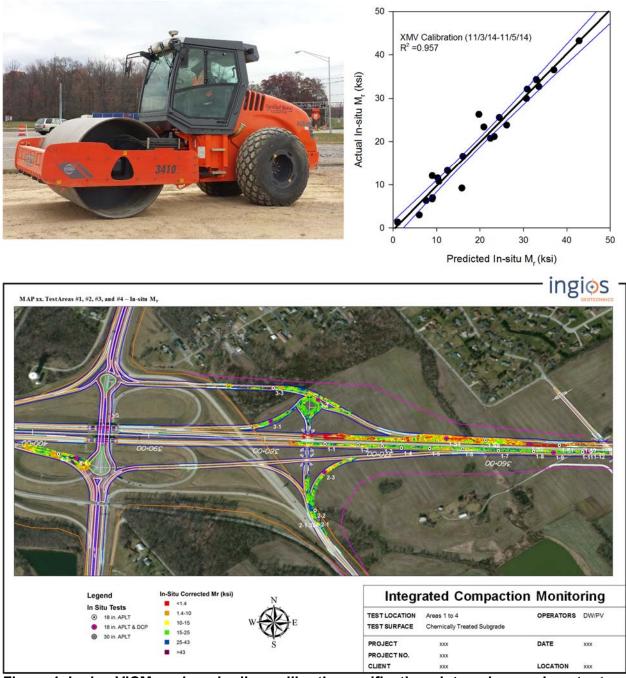
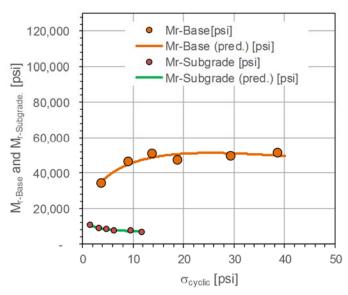
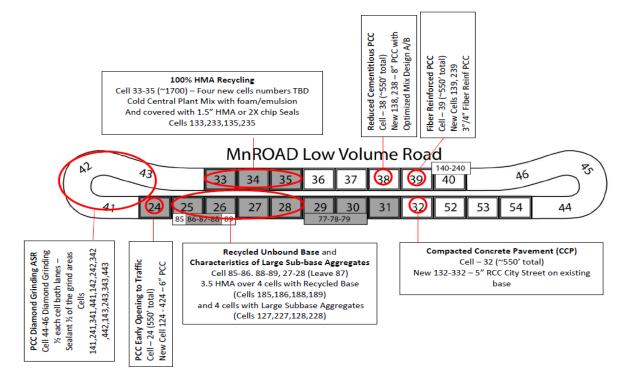



Figure 1. Ingios VICM equipped roller, calibration verification plot, and example output.

Model: AASHTO (2015) $M_r = k_1^* P_a \left(\frac{\theta}{P_a}\right)^{k_2^*} \left(1 + \frac{\tau_{oct}}{P_a}\right)^{k_3^*}$											
Parameter	Value	P-Value									
k* _{1 (Base)}	3129.4	1.00E-06									
k* _{2 (Base)}	0.400	2.97E-02									
k* _{3 (Base)}	-1.875	8.86E-02									
Adj. R ²	0.863										
Std. Error [psi]	2280										
k* _{1 (Subgrade)}	494.7	8.29E-05									
k* _{2 (Subgrade)}	-0.296	1.45E-01									
k* _{3 (Subgrade)}	0.812	6.95E-01									
Adj. R ²	0.937										
Std. Error [psi]	326										

Figure 2. Ingios APLT system with 2-layered sensor measurement kit for measurement of stress-dependent resilient modulus and AASHTO (2015) universal model parameters.



		TE STATISTIC Ksat	Time	Time	Cd or	Tormat Kaat		1,000 ft/day
		ft/day	hrs	days	mi	Target Ksat	:	
	No. of measurements	:				Desired Degree of Drainage, U		90 %
	Minimum	:				Target Time for Drainage, t		1.0 Hours
	Maximum	:				COMPARISON OF IN SITU VALUE	S TO TARG	ET VALUES
	Median	:				Ksat values > Target		
	Mean	:				t values > Target		
	Std. Deviation	:				t values > laiget	- i	*
	Coeff. Of Variation	:						
1	Sat. Hydraulic Conductivity, Ksat K _{sat}	10,000		Time of Dra	ainage, t			per AASHTO 1993
						Excellen	۱ I	%
_					• • • •	Good	: [*
3		ft/day	× III			₽ Fair	•	*
				•••		Poor	: [*
1					••••	Very Poo	er :	%
-								
	×™ ngi⊙s	0.01		• •	X [ft]	0.01		

Figure 3. Ingios PPT equipment and geospatial drainage time analysis output.

2017 MnROAD-NRRA CONSTRUCTION

Low Volume Road

			Cold Cen	tral Plant Recycli	Redu	uced Cementitiou	s PCC	PCC Early 1	Traffic Opening			
	Original 33	Original 34	Original 35	New 133	New 233	New 135	New 235	Original 38	New 138	New 238	Original 24	New 124 - 424
	4" 58-34 PPA	4" 58-34 SBS+PPA	4" 58-34 SBS	2X Chip 4" CCPR (Emulsion)	2X Chip 4" CCPR (Foam)	1.5" HMA 4" CCPR (Foam)	1.5" HMA 4" CCPR (Emulsion)	6" Trans Tined 15'Lx12'W	8" PCC w/ Optimized Mix Design A 15'Lx12'W	8" PCC w/ Optimized Mix Design B 15'Lx12'W	3" 58-34 4"	6" PCC 15'Lx12'W 1" dowel
	12" Class 6	12" Class 6	12" Class 6	12" Class 6	12" Class 6	12" Class 6	12" Class 6	1" dowel 5" Class 5 Clay	1" dowel 5" Class 5 Clay	1" dowel 5" Class 5 Clay	Class 6 Sand 100' Fog Seals 2008 2009 2010 2011 2011 2012	6" Class 6 Sand
	Clay	Clay	Clay	Clay 1" Double Chip Seal	Clay 1" Double Chip Seal	Clay 1.5" HMA Overlay	Clay 1.5" HMA Overlay				Chip Seal 2014	
ft) ft)	Sep 07 500 71	Sep 07 499 54	Sep 07 499 132	2017 425	2017 425	2017 425	2017 437	Jul 93 480 67	2017 257.5 67	2017 260 67	Oct 08 507 41	2017 507

Fiber Reinforced PO	c		Recycled Unbound Base									
New 139	New 239	Original 85	Original 86	Original 88	Original 89	New 185	New 186	New 188	New 189			
3" Fiber Reinf PCC	4" Fiber Reinf PCC	7" Pervious	5" Porous	5" Porous	7" Ponvious	3.5" HMA	3.5" HMA	3.5" HMA	3.5" HMA			
6"	6"	PCC	4" RR	4" RR	PCC	-						
4"	4"	4" RR Ballast	10"	10"	4" RR Ballast	12" Coarse RCA	12" Fine RCA	12" Limestone Aggregate Class 6	12" Recycled Aggregate Base Class 6			
Common Borrow	Common Borrow	8" CA-15		CATS	8" CA-15							
		Type V	Type V	Type V	Type V	3.5" Select	3.5" Select	3.5" Select	3.5" Select			
6'Lx6'W Sealed Joints	6'Lx6'W Sealed Joints	Geo- Textile	Geo- Textile	Geo- Textile	Geo- Textile	Granular Borrow	Granular Borrow	Granular Borrow	Granular Borrow			
		Sand	Sand	Clay	Clay	Sand	Sand	Clay	Clay			
2017 280	2017 285	Oct 08 216 0	Oct 08 235 0	Oct 08 225 0	217	216	2017 235	2017 225	2017 217			
	New 139 3" Fiber Reinf PCC 6" Class 5 4" Common Borrow Clay 6'Lx6'W Sealed Joints 2017 280	New 139New 2393" Fiber Reinf PCC4" Fiber Reinf PCC6" Class 56" Class 54" Common Borrow6" Class 54" Common BorrowClay Clay Clay ClayClay Clay ClayClay Clay Clay Clay Clay Sealed Joints2017 2802017 285	New 139New 239Original 853" Fiber Reinf PCC4" Fiber Reinf PCC7" Pervious PCC6" Class 56" Class 54" RR Ballast4" Common Borrow6" Clay4" RR Ballast6" ClayCommon Borrow8" CA-15Clay ClayClay ClayType V Geo- Textile6"Lx6"W Sealed JointsSand2017 2802017 285Oct 08 216	New 139New 239Original 85Original 863" Fiber Reinf PCC4" Fiber Reinf PCC7" Pervious PCC5" Porous HMA6" Class 56" Class 54" RR Ballast864" Common Borrow6" Class 54" RR Ballast10" CA-15Clay ClayClay ClayType V Geo- Textile7" Pervious PCC6" ClayClay ClayType V Geo- Textile3" Sand2017 2802017 285216235	New 139New 239Original 85Original 86Original 883" Fiber Reinf PCC4" Fiber Reinf PCC7" Pervious PCC5" Porous HMA5" Porous HMA6" Class 56" Class 54" RR Ballast8allast4" Common Borrow4" Clay4" RR Clay8" CA-154" RR Ballast6" ClayClay10" CA-1510" CA-1510" CA-15Clay ClayClay ClayType V Geo- TextileType V Geo- TextileType V Clay6"Lx6"W Sealed JointsSandSandClay ClayClay Clay2017 280285216235225	New 139New 239Original 85Original 86Original 88Original 883" Fiber Reinf PCC4" Fiber Reinf PCC7" Pervious PCC5" Porous HMA5" Porous HMA7" Pervious PCC6" Class 56" Class 54" RR Ballast4" RR Ballast4" RR Ballast4" RR Ballast4" Common Borrow4" Clay Clay4" RR Clay8" CA-154" RR Ballast4" RR Ballast6" ClayClay ClayClay Clay7" Pervious PCC8" CA-1510" CA-1510" CA-15Clay ClayClay ClayClay ClayType V Geo- TextileType V Geo- Textile8" Cao-<	New 139New 239Original 85Original 86Original 88Original 88Original 88New 1853" Fiber Reinf PCC4" Fiber Reinf PCC7" Pervious PCC7" Pervious PCC5" Porous HMA5" Porous HMA7" Pervious PCC3.5" HMA6" Class 56" Class 56" Class 54" RR Ballast4" RR Ballast4" RR Ballast4" RR Ballast10" CA-154" RR Ballast12" Coarse RCA4" Common BorrowClay Clay Clay ClayClay ClayType V Geo- TextileType V Geo- TextileType V ClayType V Geo- Textile3.5" Select Granular BorrowClay 2017Clay 20172017 2017Oct 08 216Oct 08 235Oct 08 225Oct 08 217Oct 08 216	New 139New 239Original 85Original 86Original 88Original 88Original 89New 185New 1853" Fiber Reinf PCC4" Fiber Reinf PCC7" Pervious PCC7" Pervious PCC5" Porous HMA5" Porous HMA7" Pervious PCC3.5" HMA3.5" HMA6" Class 56" Class 56" Class 54" RR Ballast4" RR Ballast4" RR Ballast10" CA-154" RR Ballast12" Coarse RCA12" Fine RCA4" Common BorrowClay ClayClay ClayType V G'Lx6'W Sealed Joints7ype V SandType V Geo- TextileType V Geo- TextileType V Geo- Textile3.5" Select Geo- Textile3.5" Select Geo- Textile2017 2802017 2852017 216Oct 08 235Oct 08 225Oct 08 2172017 2162017 235	New 139New 239Original 85Original 86Original 88Original 88Original 89New 185New 185New 186New 1883" Fiber Reinf PCC4" Fiber Reinf PCC7" Pervious PCC5" PCC5" Porous HMA5" Porous HMA5" Porous PCC7" Pervious PCC3.5" HMA3.5" HMA3.5" HMA6" Class 56" Class 56" Class 56" Class 54" RR Ballast4" RR Ballast4" RR Ballast4" RR Ballast10" CA-1512" Coarse RCA12" Fine RCA12" Limestone Aggregate Class 66" ClayClay G'Lx6'W Sealed Joints7 8" CA-1510" CA-1510" CA-1510" CA-1512" Coarse RCA Borrow12" Fine RCA12" Limestone Aggregate Class 612 Clay ClayClay Geo- Textile10" CA-1510" CA-153.5" Select Geo- Textile3.5" Select Borrow3.5" Select Granular Borrow3.5" Select Granular Borrow2017 20172017 2162162252172017 2162017 2252217			

Larg	ge Subbase Aggre	gate	Larg	e Subbase Aggre	gate		Compacted Concre	PCC Diamond Grinding ASR			
Original	New	New	Original	New	New	Original	New	New	New	Original	New
27	127	227	28	128	228	32	132	232	332	41 - 43	141-143, 241-243 341-343, 441-44
2" 52-34 2"	3.5" HMA	3.5" HMA	6" SFDR Chip Seal 2012 Spot	3.5" HMA	3.5" HMA	5" Astro Turf	5" CCP w/ Fibers	5" CCP	5" CCP	12"	
58-34 6"	6"	6"	Repairs	6"	6"	10Lx12W				Trans Tined	Refer to the not
Class 5	Class 6	Class 6	Fog Seal 4" Class 5	Class 6	Class 5Q	Class 1f	7" Class 5Q	7" Class 5Q	7" Class 5Q	12'Lx15'W 1" Dowels	below
GCBD 2009 Chip Seal	18" Large	18" Large	2009 Chip Seal	9" Large	9" Large	Class 1c				Clay	Clay
7" Clay Borrow	Aggregate Subbase	Aggregate Subbase	7" Clay Borrow	Aggregate Subbase	Aggregate Subbase	Clay	Clay	Clay	Clay		
Clay	1 lift	2 lifts	Clay	Clay	Clay		20'Lx12'W Unsealed Joints	20'Lx12'W Unsealed Joints	12'Lx12'W Unsealed Joints		
	Clay	Clay		Cidy	Cidy						
Aug 06	2017 282.5	2017 285	Sep 11 500	2017 285	2017 285	Jun 00 460	2017 150	2017 150	2017 170	Jul 93	2017
) 68	202.0	200	65			0		250		L	

Note: Plan view for Cells 141 - 443

Cell	141	241	341	441	142	242	342	442	143	243	343	443
Outside Lane	No Work	Sealer	Diamond grind (0.25" removal) Sealer	U U	Diamond grind (0.25" removal)	Diamond grind (0.25" removal) Sealer	Sealer	No Work	Diamond grind (0.25" removal)	Diamond grind (0.25" removal) Sealer	Sealer	No Work
Inside Lane	No Work	Sealer	Diamond grind (0.25" removal) Sealer	Diamond grind (0.25" removal)	Diamond grind (0.25" removal)	Diamond grind (0.25" removal) Sealer	Sealer	No Work	Diamond grind (0.25" removal)	Diamond grind (0.25" removal) Sealer	Sealer	No Work